Generative AI improves MRI‐based Detection of Alzheimer’s Disease by using Latent Diffusion Models and Convolutional Neural Networks

卷积神经网络 生成模型 人工智能 计算机科学 人工神经网络 生成语法 模式识别(心理学)
作者
Nikhil J. Dhinagar,Sophia I. Thomopoulos,Paul M. Thompson
出处
期刊:Alzheimers & Dementia [Wiley]
卷期号:20 (S2)
标识
DOI:10.1002/alz.089958
摘要

Abstract Background As new treatments (such as the anti‐amyloid vaccine, lecanamab) emerge for Alzheimer’s disease (AD) and other dementias, approaches are required to rapidly diagnose AD at the earliest possible stage, and to assess disease progression and prognosis. In January 2024, the FDA approved the first AI tool to predict AD progression based on magnetic resonance imaging (MRI) [1]. Here we train a generative AI approach based on latent diffusion models ‐ to encode disease effects on brain structures. We show how AI‐based generation of synthetic scans can complement existing datasets for AD‐related diagnostic tasks. Method We analyzed 4,098 3D T1‐weighted brain MRI scans (556M/632F, 55.7 ‐ 92.8 years) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). We trained a latent diffusion model (LDM) [2] as our generative AI framework. The model was conditioned on the disease status of AD versus healthy controls to generate synthetic brain MRI scans. For validation, the generated synthetic MRI scans was used to initialize a 3D DenseNet‐121 CNN (convolutional neural network) [3], and then further fine‐tuned for AD classification. Result The table below summarizes the AD classification performance of a 3D CNN on a test set of 1,219 scans from ADNI. The synthetic data improved performance by over 2%, i.e., receiver‐operator characteristic curve‐area under the curve (ROC‐AUC) from 0.8656 to 0.8869. Conclusion In this work, we trained a latent diffusion model to generate brain MRI scans. When these scans were used to train a deep neural network to detect AD, performance increased. Future work will test these generative AI models for interpretable disease detection via counterfactual image generation, and to discover factors that affect AD onset and progression via meta‐data encoding in the generative model. References : [1]. J. Shugart, FDA Approves BrainSee, AI Software That Purportedly Predicts AD, AlzForum News, available at: https://www.alzforum.org/news/research‐news/fda‐approves‐brainsee‐ai‐software‐purportedly‐predicts‐ad , 2024. [2] W. H. L. Pinaya et al., “Brain Imaging Generation with Latent Diffusion Models,” MICCAI Workshop on Deep Generative Models (DGM4MICCAI) 2022, pp 117‐126. [3] N. Dhinagar et al., “Video and Synthetic MRI Pre‐training of 3D Vision Architectures for Neuroimage Analysis,” SPIE Medical Imaging 2024.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助bjbmtxy采纳,获得30
1秒前
李伟发布了新的文献求助10
1秒前
六六大顺完成签到,获得积分10
1秒前
小白完成签到 ,获得积分10
1秒前
所所应助zed采纳,获得10
1秒前
adgcxvjj应助wxyllxx采纳,获得10
3秒前
3秒前
Re完成签到,获得积分10
3秒前
科研通AI2S应助dhbt采纳,获得10
5秒前
慕华完成签到 ,获得积分10
5秒前
太渊发布了新的文献求助10
6秒前
7秒前
要减肥的乐双完成签到 ,获得积分10
7秒前
搜集达人应助核桃采纳,获得10
10秒前
11秒前
11秒前
12秒前
NexusExplorer应助小慧儿采纳,获得10
13秒前
14秒前
听海发布了新的文献求助10
14秒前
15秒前
英姑应助caizhiwei采纳,获得10
15秒前
搜集达人应助认真的豌豆采纳,获得10
15秒前
Lucas应助科研通管家采纳,获得10
16秒前
小蘑菇应助科研通管家采纳,获得20
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
共享精神应助科研通管家采纳,获得10
16秒前
酷波er应助科研通管家采纳,获得10
16秒前
李爱国应助科研通管家采纳,获得30
16秒前
16秒前
李健的粉丝团团长应助CCR采纳,获得30
16秒前
华仔应助科研通管家采纳,获得10
16秒前
17秒前
我是老大应助科研通管家采纳,获得10
17秒前
17秒前
无花果应助科研通管家采纳,获得10
17秒前
17秒前
木瓜、发布了新的文献求助30
17秒前
乐乐应助科研通管家采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3565922
求助须知:如何正确求助?哪些是违规求助? 3138683
关于积分的说明 9428454
捐赠科研通 2839408
什么是DOI,文献DOI怎么找? 1560695
邀请新用户注册赠送积分活动 729854
科研通“疑难数据库(出版商)”最低求助积分说明 717669