Metabolomic signature of retinal ageing, polygenetic susceptibility, and major health outcomes

医学 糖尿病 老化 队列 痴呆 黄斑变性 视网膜 代谢组学 生命银行 内科学 眼科 生物信息学 内分泌学 疾病 生物
作者
Riqian Liu,Shaopeng Yang,Xiaoying Zhong,Ziyu Zhu,Wenyong Huang,Wei Wang
出处
期刊:British Journal of Ophthalmology [BMJ]
卷期号:109 (5): 619-627 被引量:1
标识
DOI:10.1136/bjo-2024-325846
摘要

Background/aims To identify the metabolic underpinnings of retinal aging and examine how it is related to mortality and morbidity of common diseases. Methods The retinal age gap has been established as essential aging indicator for mortality and systemic health. We applied neural network to train the retinal age gap among the participants in UK Biobank and used nuclear magnetic resonance (NMR) to profile plasma metabolites. The metabolomic signature of retinal ageing (MSRA) was identified using an elastic network model. Multivariable Cox regressions were used to assess associations between the signature with 12 serious health conditions. The participants in Guangzhou Diabetic Eye Study (GDES) cohort were analyzed for validation. Results This study included 110 722 participants (mean age 56.5±8.1 years at baseline, 53.8% female), and 28 plasma metabolites associated with retinal ageing were identified. The MSRA revealed significant correlations with each 12 serious health conditions beyond traditional risk factors and genetic predispositions. Each SD increase in MSRA was linked to a 24%–76% higher risk of mortality, cardiovascular diseases, dementia and diabetes mellitus. MSRA showed dose–response relationships with risks of these diseases, with seven showing non-linear and five showing linear increases. Validation in the GDES further established the relation between retinal ageing-related metabolites and increased risks of cardiovascular and chronic kidney diseases (all p<0.05). Conclusions The metabolic connections between ocular and systemic health offer a novel tool for identifying individuals at high risk of premature ageing, promoting a more holistic view of human health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Aryan完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
斯文败类应助郭腾采纳,获得10
2秒前
happy完成签到,获得积分10
3秒前
3秒前
4秒前
彭于晏应助勇敢的心采纳,获得10
5秒前
5秒前
任某人发布了新的文献求助10
5秒前
6秒前
李健的粉丝团团长应助reai采纳,获得10
6秒前
6秒前
李健应助纯真的德地采纳,获得10
6秒前
6秒前
Gouo完成签到 ,获得积分10
7秒前
7秒前
8秒前
柔弱思卉完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
大方的芸发布了新的文献求助10
9秒前
MonicaR完成签到,获得积分10
10秒前
10秒前
粗心的墨镜完成签到,获得积分10
11秒前
11秒前
Maestro_S发布了新的文献求助10
12秒前
wwwq发布了新的文献求助10
12秒前
liuying发布了新的文献求助10
12秒前
XinChenLee发布了新的文献求助10
12秒前
12秒前
ZZ完成签到 ,获得积分10
13秒前
hokin33发布了新的文献求助30
13秒前
jyk完成签到,获得积分10
13秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
一期一会发布了新的文献求助30
16秒前
英俊皮卡丘完成签到,获得积分10
16秒前
NexusExplorer应助芋头采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785120
求助须知:如何正确求助?哪些是违规求助? 5686059
关于积分的说明 15466834
捐赠科研通 4914228
什么是DOI,文献DOI怎么找? 2645117
邀请新用户注册赠送积分活动 1592946
关于科研通互助平台的介绍 1547300