亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Using Machine Learning Models to Predict Pathologic Complete Response to Neoadjuvant Chemotherapy in Breast Cancer

乳腺癌 布里氏评分 医学 缺少数据 队列 随机森林 接收机工作特性 肿瘤科 癌症 内科学 统计 机器学习 计算机科学 数学
作者
Rayhan Erlangga Rahadian,Hong Qi Tan,Bryan Shihan Ho,Arjunan Kumaran,Andre Villanueva,Joy Sng,Ryan Tan,Tira J. Tan,Veronique Kiak Mien Tan,Benita Kiat Tee Tan,Geok Hoon Lim,Yiyu Cai,Wen Long Nei,Fuh Yong Wong
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号: (8) 被引量:2
标识
DOI:10.1200/cci.24.00071
摘要

PURPOSE Neoadjuvant chemotherapy (NAC) is increasingly used in breast cancer. Predictive modeling is useful in predicting pathologic complete response (pCR) to NAC. We test machine learning (ML) models to predict pCR in breast cancer and explore methods of handling missing data. METHODS Four hundred and ninety-nine patients with breast cancer treated with NAC in two centers in Singapore (National Cancer Centre Singapore [NCCS] and KK Hospital) between January 2014 and December 2017 were included. Eleven clinical features were used to train five different ML models. Listwise deletion and imputation were evaluated on handling missing data. Model performance was evaluated by AUC and calibration (Brier score). Feature importance from the best performing model in the external testing data set was calculated using Shapley additive explanations. RESULTS Seventy-two (24.6%), 18 (24.7%), and 31 (24.8%) patients attained pCR in NCCS training, NCCS testing, and KK Women's and Children's Hospital (KKH) testing data sets, respectively. The random forest (RF) base and imputed models have the highest AUCs in the KKH cohort of 0.794 (95% CI, 0.709 to 0.873) and 0.795 (95% CI, 0.706 to 0.871), respectively, and were the best calibrated with the lowest Brier score. No statistically significant difference was noted between AUCs of the base and imputed models in all data sets. The imputed model had a larger positive predictive value (PPV; 98.2% v 95.1%) and negative predictive value (NPV; 96.7% v 90.0%) than the base model in the KKH data set. Estrogen receptor intensity, human epidermal growth factor 2 intensity, and age at diagnosis were the three most important predictors. CONCLUSION ML, particularly RF, demonstrates reasonable accuracy in pCR prediction after NAC. Imputing missing fields in the data can improve the PPV and NPV of the pCR prediction model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LONG发布了新的文献求助10
2秒前
科目三应助LLL采纳,获得10
2秒前
搜集达人应助1461644768采纳,获得10
6秒前
沧浪完成签到,获得积分10
7秒前
histamin完成签到,获得积分10
7秒前
qiu关闭了qiu文献求助
9秒前
三年两篇以上SCI完成签到 ,获得积分20
12秒前
Criminology34应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
Criminology34应助科研通管家采纳,获得10
19秒前
熬夜波比应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
绮罗完成签到 ,获得积分10
21秒前
qiu发布了新的文献求助10
22秒前
yxl要顺利毕业_发6篇C完成签到,获得积分10
23秒前
胖胖的江鸟完成签到 ,获得积分10
23秒前
30秒前
诸葛不亮完成签到,获得积分10
30秒前
qiu完成签到,获得积分10
35秒前
布林发布了新的文献求助10
36秒前
王敏娜完成签到 ,获得积分10
37秒前
肥牛完成签到,获得积分10
38秒前
Jasper应助zyy采纳,获得10
39秒前
Jasper应助Shin采纳,获得10
39秒前
menyu完成签到,获得积分10
44秒前
111完成签到,获得积分10
45秒前
46秒前
zsyf完成签到,获得积分10
46秒前
布林完成签到,获得积分20
46秒前
menyu发布了新的文献求助10
48秒前
抚琴祛魅完成签到 ,获得积分10
48秒前
abc完成签到,获得积分10
51秒前
不想起名发布了新的文献求助10
51秒前
54秒前
Vince发布了新的文献求助10
57秒前
秦时明月完成签到,获得积分10
59秒前
Jasper应助LONG采纳,获得10
1分钟前
爱笑的无心完成签到 ,获得积分10
1分钟前
tianming完成签到,获得积分10
1分钟前
ding应助请输入昵称采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681194
求助须知:如何正确求助?哪些是违规求助? 5005631
关于积分的说明 15175172
捐赠科研通 4840849
什么是DOI,文献DOI怎么找? 2594550
邀请新用户注册赠送积分活动 1547639
关于科研通互助平台的介绍 1505605