Using Machine Learning Models to Predict Pathologic Complete Response to Neoadjuvant Chemotherapy in Breast Cancer

乳腺癌 布里氏评分 医学 缺少数据 队列 随机森林 接收机工作特性 肿瘤科 癌症 内科学 统计 机器学习 计算机科学 数学
作者
Rayhan Erlangga Rahadian,Hong Qi Tan,Bryan Shihan Ho,Arjunan Kumaran,Andre Villanueva,Joy Sng,Ryan Tan,Tira J. Tan,Veronique Kiak Mien Tan,Benita Kiat Tee Tan,Geok Hoon Lim,Yiyu Cai,Wen Long Nei,Fuh Yong Wong
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号: (8) 被引量:2
标识
DOI:10.1200/cci.24.00071
摘要

PURPOSE Neoadjuvant chemotherapy (NAC) is increasingly used in breast cancer. Predictive modeling is useful in predicting pathologic complete response (pCR) to NAC. We test machine learning (ML) models to predict pCR in breast cancer and explore methods of handling missing data. METHODS Four hundred and ninety-nine patients with breast cancer treated with NAC in two centers in Singapore (National Cancer Centre Singapore [NCCS] and KK Hospital) between January 2014 and December 2017 were included. Eleven clinical features were used to train five different ML models. Listwise deletion and imputation were evaluated on handling missing data. Model performance was evaluated by AUC and calibration (Brier score). Feature importance from the best performing model in the external testing data set was calculated using Shapley additive explanations. RESULTS Seventy-two (24.6%), 18 (24.7%), and 31 (24.8%) patients attained pCR in NCCS training, NCCS testing, and KK Women's and Children's Hospital (KKH) testing data sets, respectively. The random forest (RF) base and imputed models have the highest AUCs in the KKH cohort of 0.794 (95% CI, 0.709 to 0.873) and 0.795 (95% CI, 0.706 to 0.871), respectively, and were the best calibrated with the lowest Brier score. No statistically significant difference was noted between AUCs of the base and imputed models in all data sets. The imputed model had a larger positive predictive value (PPV; 98.2% v 95.1%) and negative predictive value (NPV; 96.7% v 90.0%) than the base model in the KKH data set. Estrogen receptor intensity, human epidermal growth factor 2 intensity, and age at diagnosis were the three most important predictors. CONCLUSION ML, particularly RF, demonstrates reasonable accuracy in pCR prediction after NAC. Imputing missing fields in the data can improve the PPV and NPV of the pCR prediction model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助陆崧瀚采纳,获得10
1秒前
深情安青应助如梦如画采纳,获得10
1秒前
1秒前
1秒前
Hao发布了新的文献求助10
2秒前
2秒前
wbb123发布了新的文献求助10
2秒前
2秒前
浮游应助小王梓采纳,获得10
3秒前
Zx_1993应助qiu采纳,获得20
3秒前
HYT完成签到,获得积分10
3秒前
毛毛发布了新的文献求助10
3秒前
大个应助Smry采纳,获得10
3秒前
3秒前
生物摸鱼大师完成签到,获得积分20
4秒前
抗氧剂发布了新的文献求助10
4秒前
kuroadsaas完成签到,获得积分10
5秒前
5秒前
李小宁发布了新的文献求助10
5秒前
Jia发布了新的文献求助10
6秒前
6秒前
小二郎应助6161采纳,获得10
6秒前
bkagyin应助壮观海云采纳,获得10
6秒前
JIAN发布了新的文献求助10
6秒前
7秒前
乐乐应助张启帆采纳,获得10
7秒前
加减法完成签到 ,获得积分10
7秒前
顺心纸鹤完成签到,获得积分10
8秒前
Chen完成签到 ,获得积分10
9秒前
顺风顺水顺科研完成签到,获得积分10
9秒前
白辞完成签到,获得积分10
9秒前
烟花应助李小宁采纳,获得10
10秒前
小蘑菇应助leela采纳,获得10
10秒前
10秒前
10秒前
11秒前
荀煜祺发布了新的文献求助10
11秒前
你都至少信我八分吧完成签到 ,获得积分10
11秒前
AnnaC完成签到,获得积分10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5552469
求助须知:如何正确求助?哪些是违规求助? 4637218
关于积分的说明 14648146
捐赠科研通 4579088
什么是DOI,文献DOI怎么找? 2511302
邀请新用户注册赠送积分活动 1486474
关于科研通互助平台的介绍 1457556