Using Machine Learning Models to Predict Pathologic Complete Response to Neoadjuvant Chemotherapy in Breast Cancer

乳腺癌 布里氏评分 医学 缺少数据 队列 随机森林 接收机工作特性 肿瘤科 癌症 内科学 统计 机器学习 计算机科学 数学
作者
Rayhan Erlangga Rahadian,Hong Qi Tan,Bryan Shihan Ho,Arjunan Kumaran,Andre Villanueva,Joy Sng,Ryan Tan,Tira J. Tan,Veronique Kiak Mien Tan,Benita Kiat Tee Tan,Geok Hoon Lim,Yiyu Cai,Wen Long Nei,Fuh Yong Wong
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号: (8)
标识
DOI:10.1200/cci.24.00071
摘要

PURPOSE Neoadjuvant chemotherapy (NAC) is increasingly used in breast cancer. Predictive modeling is useful in predicting pathologic complete response (pCR) to NAC. We test machine learning (ML) models to predict pCR in breast cancer and explore methods of handling missing data. METHODS Four hundred and ninety-nine patients with breast cancer treated with NAC in two centers in Singapore (National Cancer Centre Singapore [NCCS] and KK Hospital) between January 2014 and December 2017 were included. Eleven clinical features were used to train five different ML models. Listwise deletion and imputation were evaluated on handling missing data. Model performance was evaluated by AUC and calibration (Brier score). Feature importance from the best performing model in the external testing data set was calculated using Shapley additive explanations. RESULTS Seventy-two (24.6%), 18 (24.7%), and 31 (24.8%) patients attained pCR in NCCS training, NCCS testing, and KK Women's and Children's Hospital (KKH) testing data sets, respectively. The random forest (RF) base and imputed models have the highest AUCs in the KKH cohort of 0.794 (95% CI, 0.709 to 0.873) and 0.795 (95% CI, 0.706 to 0.871), respectively, and were the best calibrated with the lowest Brier score. No statistically significant difference was noted between AUCs of the base and imputed models in all data sets. The imputed model had a larger positive predictive value (PPV; 98.2% v 95.1%) and negative predictive value (NPV; 96.7% v 90.0%) than the base model in the KKH data set. Estrogen receptor intensity, human epidermal growth factor 2 intensity, and age at diagnosis were the three most important predictors. CONCLUSION ML, particularly RF, demonstrates reasonable accuracy in pCR prediction after NAC. Imputing missing fields in the data can improve the PPV and NPV of the pCR prediction model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淞淞于我完成签到 ,获得积分10
1秒前
bkagyin应助我的miemie采纳,获得10
1秒前
1秒前
FashionBoy应助XIXI采纳,获得10
2秒前
尛破孩发布了新的文献求助10
3秒前
Hawaii发布了新的文献求助10
3秒前
香蕉觅云应助贾晨鹤采纳,获得10
3秒前
加油发布了新的文献求助10
4秒前
笑哈哈发布了新的文献求助30
4秒前
chopin完成签到,获得积分10
6秒前
杰哥不要完成签到 ,获得积分10
6秒前
高高的寻梅完成签到,获得积分10
6秒前
Sharon完成签到 ,获得积分10
7秒前
Lei完成签到 ,获得积分10
7秒前
7秒前
Leo完成签到 ,获得积分10
8秒前
meng完成签到,获得积分10
8秒前
一白完成签到 ,获得积分10
9秒前
Lucas应助加油采纳,获得10
9秒前
9秒前
10秒前
gxnu123发布了新的文献求助10
12秒前
mbf完成签到,获得积分10
13秒前
兔兔发布了新的文献求助10
14秒前
Jaja发布了新的文献求助10
15秒前
加油完成签到,获得积分20
16秒前
随机子应助欣喜的香彤采纳,获得10
16秒前
调皮便当完成签到,获得积分10
16秒前
万万完成签到,获得积分20
17秒前
慕青应助美好灵寒采纳,获得10
17秒前
Persist6578完成签到 ,获得积分10
17秒前
18秒前
19秒前
19秒前
鲤鱼依白完成签到 ,获得积分10
19秒前
19秒前
gr完成签到,获得积分10
19秒前
拼搏城完成签到,获得积分20
20秒前
爱读文献关注了科研通微信公众号
20秒前
贾晨鹤发布了新的文献求助10
22秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165183
求助须知:如何正确求助?哪些是违规求助? 2816187
关于积分的说明 7911845
捐赠科研通 2475930
什么是DOI,文献DOI怎么找? 1318423
科研通“疑难数据库(出版商)”最低求助积分说明 632143
版权声明 602388