亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Using Machine Learning Models to Predict Pathologic Complete Response to Neoadjuvant Chemotherapy in Breast Cancer

乳腺癌 布里氏评分 医学 缺少数据 队列 随机森林 接收机工作特性 肿瘤科 癌症 内科学 统计 机器学习 计算机科学 数学
作者
Rayhan Erlangga Rahadian,Hong Qi Tan,Bryan Shihan Ho,Arjunan Kumaran,Andre Villanueva,Joy Sng,Ryan Tan,Tira J. Tan,Veronique Kiak Mien Tan,Benita Kiat Tee Tan,Geok Hoon Lim,Yiyu Cai,Wen Long Nei,Fuh Yong Wong
出处
期刊:JCO clinical cancer informatics [Lippincott Williams & Wilkins]
卷期号: (8) 被引量:2
标识
DOI:10.1200/cci.24.00071
摘要

PURPOSE Neoadjuvant chemotherapy (NAC) is increasingly used in breast cancer. Predictive modeling is useful in predicting pathologic complete response (pCR) to NAC. We test machine learning (ML) models to predict pCR in breast cancer and explore methods of handling missing data. METHODS Four hundred and ninety-nine patients with breast cancer treated with NAC in two centers in Singapore (National Cancer Centre Singapore [NCCS] and KK Hospital) between January 2014 and December 2017 were included. Eleven clinical features were used to train five different ML models. Listwise deletion and imputation were evaluated on handling missing data. Model performance was evaluated by AUC and calibration (Brier score). Feature importance from the best performing model in the external testing data set was calculated using Shapley additive explanations. RESULTS Seventy-two (24.6%), 18 (24.7%), and 31 (24.8%) patients attained pCR in NCCS training, NCCS testing, and KK Women's and Children's Hospital (KKH) testing data sets, respectively. The random forest (RF) base and imputed models have the highest AUCs in the KKH cohort of 0.794 (95% CI, 0.709 to 0.873) and 0.795 (95% CI, 0.706 to 0.871), respectively, and were the best calibrated with the lowest Brier score. No statistically significant difference was noted between AUCs of the base and imputed models in all data sets. The imputed model had a larger positive predictive value (PPV; 98.2% v 95.1%) and negative predictive value (NPV; 96.7% v 90.0%) than the base model in the KKH data set. Estrogen receptor intensity, human epidermal growth factor 2 intensity, and age at diagnosis were the three most important predictors. CONCLUSION ML, particularly RF, demonstrates reasonable accuracy in pCR prediction after NAC. Imputing missing fields in the data can improve the PPV and NPV of the pCR prediction model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
心砚发布了新的文献求助10
2秒前
淡然冬灵完成签到,获得积分10
3秒前
财路通八方完成签到 ,获得积分10
9秒前
大个应助chengzi采纳,获得10
10秒前
心砚完成签到,获得积分10
16秒前
情怀应助淡然冬灵采纳,获得50
17秒前
峡星牙发布了新的文献求助10
17秒前
含蓄的静竹完成签到 ,获得积分10
22秒前
38秒前
糟糕的乐驹完成签到 ,获得积分10
51秒前
华仔应助Null采纳,获得10
53秒前
神明完成签到 ,获得积分10
57秒前
琳666发布了新的文献求助150
59秒前
知更完成签到,获得积分10
1分钟前
朴素剑心完成签到,获得积分10
1分钟前
1分钟前
沙新镇完成签到,获得积分10
1分钟前
1分钟前
从容甜瓜完成签到 ,获得积分10
1分钟前
王富贵完成签到,获得积分10
1分钟前
1分钟前
无助的考拉完成签到,获得积分10
1分钟前
淡然冬灵发布了新的文献求助50
1分钟前
lyw完成签到 ,获得积分10
1分钟前
科研通AI6应助无助的考拉采纳,获得10
1分钟前
1分钟前
1分钟前
南风完成签到,获得积分10
1分钟前
五羟色胺发布了新的文献求助10
1分钟前
西扬完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
深情安青应助科研通管家采纳,获得30
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
彭于晏应助科研通管家采纳,获得10
1分钟前
小蘑菇应助科研通管家采纳,获得10
1分钟前
Li应助科研通管家采纳,获得10
1分钟前
1分钟前
顾矜应助五羟色胺采纳,获得10
1分钟前
晴雨天完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Athena操作手册 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5042461
求助须知:如何正确求助?哪些是违规求助? 4272988
关于积分的说明 13321833
捐赠科研通 4085741
什么是DOI,文献DOI怎么找? 2235316
邀请新用户注册赠送积分活动 1242895
关于科研通互助平台的介绍 1169910