Using Machine Learning Models to Predict Pathologic Complete Response to Neoadjuvant Chemotherapy in Breast Cancer

乳腺癌 布里氏评分 医学 缺少数据 队列 随机森林 接收机工作特性 肿瘤科 癌症 内科学 统计 机器学习 计算机科学 数学
作者
Rayhan Erlangga Rahadian,Hong Qi Tan,Bryan Shihan Ho,Arjunan Kumaran,Andre Villanueva,Joy Sng,Ryan Tan,Tira J. Tan,Veronique Kiak Mien Tan,Benita Kiat Tee Tan,Geok Hoon Lim,Yiyu Cai,Wen Long Nei,Fuh Yong Wong
出处
期刊:JCO clinical cancer informatics [Lippincott Williams & Wilkins]
卷期号: (8)
标识
DOI:10.1200/cci.24.00071
摘要

PURPOSE Neoadjuvant chemotherapy (NAC) is increasingly used in breast cancer. Predictive modeling is useful in predicting pathologic complete response (pCR) to NAC. We test machine learning (ML) models to predict pCR in breast cancer and explore methods of handling missing data. METHODS Four hundred and ninety-nine patients with breast cancer treated with NAC in two centers in Singapore (National Cancer Centre Singapore [NCCS] and KK Hospital) between January 2014 and December 2017 were included. Eleven clinical features were used to train five different ML models. Listwise deletion and imputation were evaluated on handling missing data. Model performance was evaluated by AUC and calibration (Brier score). Feature importance from the best performing model in the external testing data set was calculated using Shapley additive explanations. RESULTS Seventy-two (24.6%), 18 (24.7%), and 31 (24.8%) patients attained pCR in NCCS training, NCCS testing, and KK Women's and Children's Hospital (KKH) testing data sets, respectively. The random forest (RF) base and imputed models have the highest AUCs in the KKH cohort of 0.794 (95% CI, 0.709 to 0.873) and 0.795 (95% CI, 0.706 to 0.871), respectively, and were the best calibrated with the lowest Brier score. No statistically significant difference was noted between AUCs of the base and imputed models in all data sets. The imputed model had a larger positive predictive value (PPV; 98.2% v 95.1%) and negative predictive value (NPV; 96.7% v 90.0%) than the base model in the KKH data set. Estrogen receptor intensity, human epidermal growth factor 2 intensity, and age at diagnosis were the three most important predictors. CONCLUSION ML, particularly RF, demonstrates reasonable accuracy in pCR prediction after NAC. Imputing missing fields in the data can improve the PPV and NPV of the pCR prediction model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
舒适怀寒完成签到 ,获得积分10
1秒前
miao应助孙淼采纳,获得20
2秒前
小马甲应助孙淼采纳,获得10
2秒前
7秒前
Jiatu_Li发布了新的文献求助10
7秒前
英吉利25发布了新的文献求助10
11秒前
13秒前
14秒前
CodeCraft应助zzydada采纳,获得20
15秒前
yangL完成签到,获得积分10
15秒前
16秒前
充电宝应助科研通管家采纳,获得10
16秒前
华仔应助科研通管家采纳,获得10
16秒前
SciGPT应助科研通管家采纳,获得10
16秒前
共享精神应助科研通管家采纳,获得10
16秒前
顾矜应助科研通管家采纳,获得10
16秒前
小二郎应助科研通管家采纳,获得10
17秒前
852应助科研通管家采纳,获得10
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
小蘑菇应助科研通管家采纳,获得10
17秒前
乐乐应助科研通管家采纳,获得10
17秒前
17秒前
Hello应助科研通管家采纳,获得10
17秒前
彭于晏应助科研通管家采纳,获得10
17秒前
汉堡包应助科研通管家采纳,获得10
17秒前
爆米花应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
17秒前
FashionBoy应助科研通管家采纳,获得10
17秒前
李爱国应助科研通管家采纳,获得50
17秒前
哈哈哈哈发布了新的文献求助10
18秒前
二十又澪完成签到,获得积分10
18秒前
19秒前
yangL发布了新的文献求助10
19秒前
千跃完成签到,获得积分10
21秒前
阿甲发布了新的文献求助10
21秒前
22秒前
隐形曼青应助Jiatu_Li采纳,获得10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991903
求助须知:如何正确求助?哪些是违规求助? 3533023
关于积分的说明 11260405
捐赠科研通 3272329
什么是DOI,文献DOI怎么找? 1805693
邀请新用户注册赠送积分活动 882626
科研通“疑难数据库(出版商)”最低求助积分说明 809425