Using Machine Learning Models to Predict Pathologic Complete Response to Neoadjuvant Chemotherapy in Breast Cancer

乳腺癌 布里氏评分 医学 缺少数据 队列 随机森林 接收机工作特性 肿瘤科 癌症 内科学 统计 机器学习 计算机科学 数学
作者
Rayhan Erlangga Rahadian,Hong Qi Tan,Bryan Shihan Ho,Arjunan Kumaran,Andre Villanueva,Joy Sng,Ryan Tan,Tira J. Tan,Veronique Kiak Mien Tan,Benita Kiat Tee Tan,Geok Hoon Lim,Yiyu Cai,Wen Long Nei,Fuh Yong Wong
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号: (8) 被引量:2
标识
DOI:10.1200/cci.24.00071
摘要

PURPOSE Neoadjuvant chemotherapy (NAC) is increasingly used in breast cancer. Predictive modeling is useful in predicting pathologic complete response (pCR) to NAC. We test machine learning (ML) models to predict pCR in breast cancer and explore methods of handling missing data. METHODS Four hundred and ninety-nine patients with breast cancer treated with NAC in two centers in Singapore (National Cancer Centre Singapore [NCCS] and KK Hospital) between January 2014 and December 2017 were included. Eleven clinical features were used to train five different ML models. Listwise deletion and imputation were evaluated on handling missing data. Model performance was evaluated by AUC and calibration (Brier score). Feature importance from the best performing model in the external testing data set was calculated using Shapley additive explanations. RESULTS Seventy-two (24.6%), 18 (24.7%), and 31 (24.8%) patients attained pCR in NCCS training, NCCS testing, and KK Women's and Children's Hospital (KKH) testing data sets, respectively. The random forest (RF) base and imputed models have the highest AUCs in the KKH cohort of 0.794 (95% CI, 0.709 to 0.873) and 0.795 (95% CI, 0.706 to 0.871), respectively, and were the best calibrated with the lowest Brier score. No statistically significant difference was noted between AUCs of the base and imputed models in all data sets. The imputed model had a larger positive predictive value (PPV; 98.2% v 95.1%) and negative predictive value (NPV; 96.7% v 90.0%) than the base model in the KKH data set. Estrogen receptor intensity, human epidermal growth factor 2 intensity, and age at diagnosis were the three most important predictors. CONCLUSION ML, particularly RF, demonstrates reasonable accuracy in pCR prediction after NAC. Imputing missing fields in the data can improve the PPV and NPV of the pCR prediction model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
asdfzxcv应助六尺巷采纳,获得10
刚刚
刚刚
xiaoru发布了新的文献求助50
1秒前
fuchao发布了新的文献求助10
1秒前
FashionBoy应助lindoudou采纳,获得10
2秒前
2秒前
lsl应助TXZ06采纳,获得30
3秒前
RYS完成签到,获得积分10
3秒前
4秒前
Sylvia完成签到 ,获得积分10
4秒前
instanc通完成签到,获得积分20
4秒前
4秒前
Eden完成签到,获得积分10
5秒前
6秒前
揽月完成签到,获得积分10
6秒前
核桃发布了新的文献求助10
7秒前
CNYDNZB发布了新的文献求助30
7秒前
asdfzxcv应助小冯采纳,获得10
7秒前
7秒前
SJJ应助RYS采纳,获得30
7秒前
善学以致用应助龙1采纳,获得10
7秒前
8秒前
8秒前
Earrr完成签到,获得积分10
9秒前
俊逸寻菡完成签到,获得积分10
9秒前
传奇3应助cherish采纳,获得10
10秒前
wanci应助拾忆采纳,获得10
10秒前
安利完成签到,获得积分10
10秒前
CSX完成签到,获得积分10
10秒前
forever发布了新的文献求助10
11秒前
11秒前
11秒前
asdfzxcv应助六尺巷采纳,获得10
11秒前
XLC发布了新的文献求助10
12秒前
12秒前
深情安青应助WQ采纳,获得10
12秒前
12秒前
Gyz发布了新的文献求助10
13秒前
14秒前
烟花应助lindoudou采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637437
求助须知:如何正确求助?哪些是违规求助? 4743337
关于积分的说明 14999087
捐赠科研通 4795612
什么是DOI,文献DOI怎么找? 2562091
邀请新用户注册赠送积分活动 1521554
关于科研通互助平台的介绍 1481559