ABSTRACT Glucose transporters (GLUTs) play vital roles in cellular metabolism. Understanding their evolutionary dynamics in birds is essential for elucidating avian physiology and adaptation. However, the choice of gene detection method in gene family analysis may affect the conclusion. Here, we present a comprehensive investigation of methodologies and GLUT gene loss events in avian lineages, focusing on the loss of GLUT4 and GLUT8. To illustrate the effects of these methods, we first employed BUSCO‐based homolog identification, calculated pairwise evolutionary distances between different species, and performed separate blastn and blastp searches to identify homologs in two groups of animals. Our analyses revealed a significant decline in blastn accuracy with increasing evolutionary distance, represented by relative divergence times. Through a more robust blastp‐based gene detection pipeline, we provide evidence for the loss of GLUT genes in birds based on 58 vertebrate genomes, including 47 bird species. Our results support the reported early loss of GLUT4 in Aves. We also newly emphasize the absence of GLUT8 in passerines, potentially due to adaptation to high‐sugar diets in their ancestors. These findings enhance our knowledge of avian metabolism and the evolution of GLUT genes.