ConDSeg: A General Medical Image Segmentation Framework via Contrast-Driven Feature Enhancement

对比度增强 对比度(视觉) 特征(语言学) 人工智能 分割 图像(数学) 图像增强 计算机科学 计算机视觉 图像分割 模式识别(心理学) 医学 放射科 磁共振成像 语言学 哲学
作者
Mengqi Lei,Haochen Wu,Xinhua Lv,Xin Wang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2412.08345
摘要

Medical image segmentation plays an important role in clinical decision making, treatment planning, and disease tracking. However, it still faces two major challenges. On the one hand, there is often a ``soft boundary'' between foreground and background in medical images, with poor illumination and low contrast further reducing the distinguishability of foreground and background within the image. On the other hand, co-occurrence phenomena are widespread in medical images, and learning these features is misleading to the model's judgment. To address these challenges, we propose a general framework called Contrast-Driven Medical Image Segmentation (ConDSeg). First, we develop a contrastive training strategy called Consistency Reinforcement. It is designed to improve the encoder's robustness in various illumination and contrast scenarios, enabling the model to extract high-quality features even in adverse environments. Second, we introduce a Semantic Information Decoupling module, which is able to decouple features from the encoder into foreground, background, and uncertainty regions, gradually acquiring the ability to reduce uncertainty during training. The Contrast-Driven Feature Aggregation module then contrasts the foreground and background features to guide multi-level feature fusion and key feature enhancement, further distinguishing the entities to be segmented. We also propose a Size-Aware Decoder to solve the scale singularity of the decoder. It accurately locate entities of different sizes in the image, thus avoiding erroneous learning of co-occurrence features. Extensive experiments on five medical image datasets across three scenarios demonstrate the state-of-the-art performance of our method, proving its advanced nature and general applicability to various medical image segmentation scenarios. Our released code is available at \url{https://github.com/Mengqi-Lei/ConDSeg}.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111发布了新的文献求助10
1秒前
ddz完成签到,获得积分10
2秒前
大模型应助忧伤的元菱采纳,获得10
2秒前
lin发布了新的文献求助10
2秒前
共享精神应助唐磊采纳,获得10
3秒前
大胆班发布了新的文献求助10
4秒前
lucky完成签到,获得积分10
5秒前
Doc_Chen完成签到,获得积分20
7秒前
科研通AI5应助凌风采纳,获得10
8秒前
科目三应助111采纳,获得10
8秒前
老实的英姑完成签到 ,获得积分10
8秒前
8秒前
9秒前
9秒前
10秒前
尘扬完成签到,获得积分10
10秒前
10秒前
烟花应助Lyrics采纳,获得10
11秒前
11秒前
12秒前
英姑应助yoozii采纳,获得10
12秒前
是菇凉完成签到,获得积分10
12秒前
13秒前
唐磊发布了新的文献求助10
15秒前
十言发布了新的文献求助10
15秒前
16秒前
文武完成签到 ,获得积分10
16秒前
影子芳香发布了新的文献求助10
16秒前
科目三应助Frankyu采纳,获得10
17秒前
NYM完成签到 ,获得积分10
17秒前
17秒前
18秒前
在水一方应助amipc采纳,获得10
18秒前
复活发布了新的文献求助10
19秒前
务实的映菡完成签到,获得积分10
19秒前
天天快乐应助暴躁的信封采纳,获得10
19秒前
眼睛大的傲菡完成签到,获得积分10
20秒前
20秒前
小长夜完成签到,获得积分10
20秒前
T_MC郭完成签到,获得积分10
20秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3755395
求助须知:如何正确求助?哪些是违规求助? 3298462
关于积分的说明 10105902
捐赠科研通 3013141
什么是DOI,文献DOI怎么找? 1655012
邀请新用户注册赠送积分活动 789339
科研通“疑难数据库(出版商)”最低求助积分说明 753273