ConDSeg: A General Medical Image Segmentation Framework via Contrast-Driven Feature Enhancement

对比度增强 对比度(视觉) 特征(语言学) 人工智能 分割 图像(数学) 图像增强 计算机科学 计算机视觉 图像分割 模式识别(心理学) 医学 放射科 磁共振成像 语言学 哲学
作者
Mengqi Lei,Haochen Wu,Xinhua Lv,Xin Wang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2412.08345
摘要

Medical image segmentation plays an important role in clinical decision making, treatment planning, and disease tracking. However, it still faces two major challenges. On the one hand, there is often a ``soft boundary'' between foreground and background in medical images, with poor illumination and low contrast further reducing the distinguishability of foreground and background within the image. On the other hand, co-occurrence phenomena are widespread in medical images, and learning these features is misleading to the model's judgment. To address these challenges, we propose a general framework called Contrast-Driven Medical Image Segmentation (ConDSeg). First, we develop a contrastive training strategy called Consistency Reinforcement. It is designed to improve the encoder's robustness in various illumination and contrast scenarios, enabling the model to extract high-quality features even in adverse environments. Second, we introduce a Semantic Information Decoupling module, which is able to decouple features from the encoder into foreground, background, and uncertainty regions, gradually acquiring the ability to reduce uncertainty during training. The Contrast-Driven Feature Aggregation module then contrasts the foreground and background features to guide multi-level feature fusion and key feature enhancement, further distinguishing the entities to be segmented. We also propose a Size-Aware Decoder to solve the scale singularity of the decoder. It accurately locate entities of different sizes in the image, thus avoiding erroneous learning of co-occurrence features. Extensive experiments on five medical image datasets across three scenarios demonstrate the state-of-the-art performance of our method, proving its advanced nature and general applicability to various medical image segmentation scenarios. Our released code is available at \url{https://github.com/Mengqi-Lei/ConDSeg}.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lily发布了新的文献求助10
1秒前
1秒前
乐乐妈完成签到,获得积分10
2秒前
Psy完成签到,获得积分10
2秒前
开心的太清完成签到,获得积分10
3秒前
斑驳发布了新的文献求助10
5秒前
idoughnut完成签到,获得积分10
6秒前
时鹏飞完成签到 ,获得积分0
6秒前
jimmyhjy关注了科研通微信公众号
7秒前
clock完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
nan完成签到,获得积分10
8秒前
Ava应助hh采纳,获得10
9秒前
体贴寒烟完成签到 ,获得积分10
9秒前
Qingqing完成签到,获得积分10
10秒前
123完成签到 ,获得积分10
10秒前
11秒前
12秒前
嘎嘎板正完成签到,获得积分10
14秒前
Alex完成签到,获得积分10
14秒前
云墨完成签到 ,获得积分10
14秒前
hh完成签到,获得积分20
16秒前
16秒前
xelloss完成签到,获得积分10
17秒前
18秒前
紫薯球完成签到,获得积分10
18秒前
Emperor完成签到 ,获得积分0
18秒前
aaaaa完成签到,获得积分10
18秒前
GZ完成签到 ,获得积分10
19秒前
19秒前
那种完成签到,获得积分10
20秒前
顺利的乌冬面完成签到 ,获得积分10
20秒前
MM11111完成签到 ,获得积分10
24秒前
CC完成签到 ,获得积分10
24秒前
kaier完成签到 ,获得积分10
24秒前
hh发布了新的文献求助10
24秒前
科研小白完成签到,获得积分10
24秒前
kobiy完成签到 ,获得积分10
24秒前
绿波电龙完成签到,获得积分10
25秒前
vvvv发布了新的文献求助10
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960187
求助须知:如何正确求助?哪些是违规求助? 3506348
关于积分的说明 11129110
捐赠科研通 3238489
什么是DOI,文献DOI怎么找? 1789751
邀请新用户注册赠送积分活动 871889
科研通“疑难数据库(出版商)”最低求助积分说明 803095