ConDSeg: A General Medical Image Segmentation Framework via Contrast-Driven Feature Enhancement

对比度增强 对比度(视觉) 特征(语言学) 人工智能 分割 图像(数学) 图像增强 计算机科学 计算机视觉 图像分割 模式识别(心理学) 医学 放射科 磁共振成像 语言学 哲学
作者
Mengqi Lei,Haochen Wu,Xinhua Lv,Xin Wang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2412.08345
摘要

Medical image segmentation plays an important role in clinical decision making, treatment planning, and disease tracking. However, it still faces two major challenges. On the one hand, there is often a ``soft boundary'' between foreground and background in medical images, with poor illumination and low contrast further reducing the distinguishability of foreground and background within the image. On the other hand, co-occurrence phenomena are widespread in medical images, and learning these features is misleading to the model's judgment. To address these challenges, we propose a general framework called Contrast-Driven Medical Image Segmentation (ConDSeg). First, we develop a contrastive training strategy called Consistency Reinforcement. It is designed to improve the encoder's robustness in various illumination and contrast scenarios, enabling the model to extract high-quality features even in adverse environments. Second, we introduce a Semantic Information Decoupling module, which is able to decouple features from the encoder into foreground, background, and uncertainty regions, gradually acquiring the ability to reduce uncertainty during training. The Contrast-Driven Feature Aggregation module then contrasts the foreground and background features to guide multi-level feature fusion and key feature enhancement, further distinguishing the entities to be segmented. We also propose a Size-Aware Decoder to solve the scale singularity of the decoder. It accurately locate entities of different sizes in the image, thus avoiding erroneous learning of co-occurrence features. Extensive experiments on five medical image datasets across three scenarios demonstrate the state-of-the-art performance of our method, proving its advanced nature and general applicability to various medical image segmentation scenarios. Our released code is available at \url{https://github.com/Mengqi-Lei/ConDSeg}.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Chloe955发布了新的文献求助10
2秒前
3秒前
3秒前
沐沐完成签到,获得积分10
3秒前
充电宝应助bofu采纳,获得10
4秒前
脑洞疼应助FUN采纳,获得10
7秒前
8秒前
沐沐发布了新的文献求助30
8秒前
malistm发布了新的文献求助10
9秒前
彭佳丽发布了新的文献求助10
9秒前
yanhuazi完成签到,获得积分10
10秒前
39完成签到,获得积分10
10秒前
小蘑菇应助把握当下采纳,获得10
10秒前
陈欣怡完成签到,获得积分20
10秒前
连天与发布了新的文献求助10
11秒前
大林发布了新的文献求助30
11秒前
鹏826发布了新的文献求助10
13秒前
星辰大海应助bofu采纳,获得10
14秒前
15秒前
16秒前
Lucas应助彭佳丽采纳,获得10
16秒前
p_kunnnn完成签到,获得积分10
17秒前
小云飘飘发布了新的文献求助10
20秒前
烟花应助有一个盆采纳,获得10
20秒前
Chloe955完成签到,获得积分10
20秒前
毁灭世界发布了新的文献求助10
22秒前
22秒前
zwd完成签到,获得积分10
23秒前
大模型应助Nefelibate采纳,获得10
23秒前
bkagyin应助bofu采纳,获得10
24秒前
24秒前
24秒前
24秒前
连天与完成签到,获得积分10
25秒前
26秒前
Jason-1024完成签到,获得积分10
28秒前
飘逸续完成签到,获得积分10
29秒前
sonny发布了新的文献求助10
29秒前
小云飘飘完成签到,获得积分10
29秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309669
求助须知:如何正确求助?哪些是违规求助? 2942933
关于积分的说明 8511870
捐赠科研通 2618027
什么是DOI,文献DOI怎么找? 1430770
科研通“疑难数据库(出版商)”最低求助积分说明 664273
邀请新用户注册赠送积分活动 649451