小岛
异种移植
胰岛
胰岛素
内科学
内分泌学
转基因
β细胞
转基因小鼠
分泌物
生物
胰岛素振荡
免疫系统
刺激
2型糖尿病
移植
糖尿病
医学
免疫学
生物化学
基因
作者
Nizar I. Mourad,Andrea Perota,Daela Xhema,Roberto Duchi,Irina Lagutina,Cesare Galli,Pierre Gianello
标识
DOI:10.1073/pnas.2409138121
摘要
To be clinically efficient, beta cell replacement therapies such as pig islet xenotransplantation must ensure sufficient insulin secretion from grafted islets. While protection from host immune reaction is essential for islet engraftment and their subsequent functioning, intrinsic physiological properties of used cells are also a key factor. We have previously shown that islets with adenoviral-mediated expression of a dipeptidyl peptidase-resistant form of glucagon-like-peptide-1 (GLP-1) and a constitutively activated form of type 3 muscarinic receptor (M3R) in their beta cells have greatly improved insulin secretory response to glucose stimulation that is otherwise 4 to 10 times lower than human islets. Here, we describe in vitro characterization of the secretory function of pancreatic islets, derived from transgenic pigs expressing the GLP-1M3R cassette under the porcine insulin promoter (InsGLP-1M3R), and their usage to treat insulin-dependent diabetes in an immunodeficient mouse model. Our results show that InsGLP-1M3R islets isolated from neonatal and adult pigs secrete up to 15-fold more insulin in response to glucose stimulation compared to wild-type (WT) islets. They also proved to be more efficient in treating diabetes in a preclinical model as shown by a significantly higher percentage of normoglycemic recipients and higher porcine C-peptide levels up to 9 mo post implantation.
科研通智能强力驱动
Strongly Powered by AbleSci AI