Ultrafast Intelligent Sensor for Integrated Biological Fluorescence Imaging and Recognition

超短脉冲 荧光 纳米技术 材料科学 计算机科学 光学 物理 激光器
作者
Yuqing Jian,Wei Gao,Qin Yue,Hao Guo,Xiaoyu Wu,Zhenyan Jia,Huan Fei Wen,Zhonghao Li,Zongmin Ma,Xin Li,Jun Tang,Jing Wang
出处
期刊:ACS Sensors [American Chemical Society]
标识
DOI:10.1021/acssensors.4c01839
摘要

Fluorescence imaging and recognition are core technologies in targeted medicine, pathological surgery, and biomedicine. However, current imaging and recognition systems are separate, requiring repeated data transfers for imaging and recognition that lead to delays and inefficiency, hindering the capture of rapidly changing physiological processes and biological phenomena. To address these problems, we propose an integrated intelligent sensor for biological fluorescence imaging and ultrafast recognition. This sensor integrates an imaging system based on a photodetector array and a recognition system based on neural networks on a single chip, featuring a highly compact structure, a continuously adjustable optical response, and reconfigurable electrical performance. The unified architecture of the imaging and recognition systems enables ultrafast recognition (19.63 μs) of tumor margins. Additionally, the special organic materials and bulk heterojunction structure endow the photodetector array with strong wavelength dependence, achieving high specific detectivity (3.06 × 1012 Jones) in the narrowband near-infrared range commonly used in biomedical imaging (600–800 nm). After training, the sensor can accurately recognize biological fluorescence edges in real time, even under interference from other colored light noise. Benefiting from its rapidity and high accuracy, we demonstrated a simulated surgical experiment showcasing tumor edge fluorescence imaging, recognition, and cutting. This integrated approach holds the potential to establish a novel paradigm for designing and manufacturing intelligent medical sensors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jyylrl发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
刚刚
2秒前
3秒前
doctorbba发布了新的文献求助10
3秒前
田様应助傻傻的修洁采纳,获得10
3秒前
下文献的蜉蝣完成签到 ,获得积分10
4秒前
a1313发布了新的文献求助10
4秒前
yy发布了新的文献求助10
5秒前
5秒前
科研通AI6应助草莓采纳,获得10
6秒前
一站到底完成签到 ,获得积分10
6秒前
6秒前
6秒前
8秒前
莲花庙里吃苹果完成签到,获得积分20
11秒前
zhoushishan发布了新的文献求助10
12秒前
12秒前
12秒前
jyylrl完成签到,获得积分10
13秒前
13秒前
风清扬发布了新的文献求助30
15秒前
JamesPei应助忧伤的向日葵采纳,获得30
15秒前
善学以致用应助yy采纳,获得10
16秒前
16秒前
16秒前
如风发布了新的文献求助10
16秒前
16秒前
18秒前
18秒前
19秒前
19秒前
20秒前
21秒前
SuperYing发布了新的文献求助10
22秒前
22秒前
23秒前
Hello应助刘清河采纳,获得10
24秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
The polyurethanes book 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610252
求助须知:如何正确求助?哪些是违规求助? 4694737
关于积分的说明 14884005
捐赠科研通 4721516
什么是DOI,文献DOI怎么找? 2545036
邀请新用户注册赠送积分活动 1509927
关于科研通互助平台的介绍 1473039