亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Ultrafast Intelligent Sensor for Integrated Biological Fluorescence Imaging and Recognition

超短脉冲 荧光 纳米技术 材料科学 计算机科学 光学 物理 激光器
作者
Yuqing Jian,Wei Gao,Qin Yue,Hao Guo,Xiaoyu Wu,Zhenyan Jia,Huan Fei Wen,Zhonghao Li,Zongmin Ma,Xin Li,Jun Tang,Jing Wang
出处
期刊:ACS Sensors [American Chemical Society]
标识
DOI:10.1021/acssensors.4c01839
摘要

Fluorescence imaging and recognition are core technologies in targeted medicine, pathological surgery, and biomedicine. However, current imaging and recognition systems are separate, requiring repeated data transfers for imaging and recognition that lead to delays and inefficiency, hindering the capture of rapidly changing physiological processes and biological phenomena. To address these problems, we propose an integrated intelligent sensor for biological fluorescence imaging and ultrafast recognition. This sensor integrates an imaging system based on a photodetector array and a recognition system based on neural networks on a single chip, featuring a highly compact structure, a continuously adjustable optical response, and reconfigurable electrical performance. The unified architecture of the imaging and recognition systems enables ultrafast recognition (19.63 μs) of tumor margins. Additionally, the special organic materials and bulk heterojunction structure endow the photodetector array with strong wavelength dependence, achieving high specific detectivity (3.06 × 1012 Jones) in the narrowband near-infrared range commonly used in biomedical imaging (600–800 nm). After training, the sensor can accurately recognize biological fluorescence edges in real time, even under interference from other colored light noise. Benefiting from its rapidity and high accuracy, we demonstrated a simulated surgical experiment showcasing tumor edge fluorescence imaging, recognition, and cutting. This integrated approach holds the potential to establish a novel paradigm for designing and manufacturing intelligent medical sensors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
32秒前
雨之夏日发布了新的文献求助10
34秒前
善学以致用应助w123采纳,获得10
36秒前
46秒前
逮劳完成签到 ,获得积分10
49秒前
58秒前
as发布了新的文献求助10
1分钟前
as完成签到,获得积分10
1分钟前
as关闭了as文献求助
1分钟前
Oculus完成签到 ,获得积分10
1分钟前
小华完成签到 ,获得积分10
1分钟前
李爱国应助JY采纳,获得50
1分钟前
欣慰的铭完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
komorebi发布了新的文献求助10
2分钟前
丘比特应助komorebi采纳,获得10
2分钟前
Kashing完成签到,获得积分10
2分钟前
小燕子完成签到 ,获得积分10
2分钟前
叶也完成签到 ,获得积分10
3分钟前
HaCat应助科研通管家采纳,获得10
3分钟前
长情如音完成签到,获得积分10
3分钟前
3分钟前
六六完成签到 ,获得积分10
3分钟前
tree完成签到 ,获得积分10
3分钟前
子訡完成签到 ,获得积分10
4分钟前
坚强的纸飞机完成签到,获得积分10
4分钟前
Nancy0818完成签到 ,获得积分10
4分钟前
浮游应助熊建采纳,获得10
4分钟前
4分钟前
浮游应助GGBoy采纳,获得10
4分钟前
善学以致用应助可爱丹彤采纳,获得10
4分钟前
悲凉的忆南完成签到,获得积分10
4分钟前
yxl完成签到,获得积分10
4分钟前
钟哈哈完成签到,获得积分10
4分钟前
可耐的盈完成签到,获得积分10
4分钟前
4分钟前
绿毛水怪完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302321
求助须知:如何正确求助?哪些是违规求助? 4449504
关于积分的说明 13848409
捐赠科研通 4335689
什么是DOI,文献DOI怎么找? 2380484
邀请新用户注册赠送积分活动 1375488
关于科研通互助平台的介绍 1341703