Ultrafast Intelligent Sensor for Integrated Biological Fluorescence Imaging and Recognition

超短脉冲 荧光 纳米技术 材料科学 计算机科学 光学 物理 激光器
作者
Yuqing Jian,Wei Gao,Qin Yue,Hao Guo,Xiaoyu Wu,Zhenyan Jia,Huan Fei Wen,Zhonghao Li,Zongmin Ma,Xin Li,Jun Tang,Jing Wang
出处
期刊:ACS Sensors [American Chemical Society]
标识
DOI:10.1021/acssensors.4c01839
摘要

Fluorescence imaging and recognition are core technologies in targeted medicine, pathological surgery, and biomedicine. However, current imaging and recognition systems are separate, requiring repeated data transfers for imaging and recognition that lead to delays and inefficiency, hindering the capture of rapidly changing physiological processes and biological phenomena. To address these problems, we propose an integrated intelligent sensor for biological fluorescence imaging and ultrafast recognition. This sensor integrates an imaging system based on a photodetector array and a recognition system based on neural networks on a single chip, featuring a highly compact structure, a continuously adjustable optical response, and reconfigurable electrical performance. The unified architecture of the imaging and recognition systems enables ultrafast recognition (19.63 μs) of tumor margins. Additionally, the special organic materials and bulk heterojunction structure endow the photodetector array with strong wavelength dependence, achieving high specific detectivity (3.06 × 1012 Jones) in the narrowband near-infrared range commonly used in biomedical imaging (600–800 nm). After training, the sensor can accurately recognize biological fluorescence edges in real time, even under interference from other colored light noise. Benefiting from its rapidity and high accuracy, we demonstrated a simulated surgical experiment showcasing tumor edge fluorescence imaging, recognition, and cutting. This integrated approach holds the potential to establish a novel paradigm for designing and manufacturing intelligent medical sensors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贪玩藏今发布了新的文献求助10
刚刚
刚刚
1秒前
2秒前
xu完成签到,获得积分10
2秒前
wxy发布了新的文献求助10
2秒前
3秒前
4秒前
wuen完成签到,获得积分20
4秒前
水枝完成签到,获得积分10
4秒前
6秒前
香蕉觅云应助顺利铃铛采纳,获得30
6秒前
7秒前
7秒前
浮游应助苹果味水果采纳,获得10
8秒前
wxy完成签到,获得积分10
8秒前
爱搬玉米发布了新的文献求助10
9秒前
10秒前
赴宴发布了新的文献求助10
10秒前
鱼鳞飞飞完成签到,获得积分20
10秒前
10秒前
cxy发布了新的文献求助10
11秒前
aki应助烂漫夜梦采纳,获得10
12秒前
hilm应助一点点采纳,获得50
12秒前
在水一方应助贪玩藏今采纳,获得10
12秒前
12秒前
坚强的笑天完成签到,获得积分10
12秒前
zhenghua发布了新的文献求助10
14秒前
lin完成签到 ,获得积分10
14秒前
gzh完成签到,获得积分10
15秒前
SYY发布了新的文献求助10
15秒前
wanci应助MengjiaZhai采纳,获得30
16秒前
鱼鳞飞飞发布了新的文献求助30
18秒前
活泼的向秋完成签到,获得积分10
18秒前
LAIII完成签到,获得积分10
19秒前
脑洞疼应助黎明采纳,获得10
20秒前
hilm应助whn采纳,获得20
20秒前
20秒前
坦率的海豚完成签到,获得积分10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5461104
求助须知:如何正确求助?哪些是违规求助? 4566154
关于积分的说明 14303688
捐赠科研通 4491806
什么是DOI,文献DOI怎么找? 2460476
邀请新用户注册赠送积分活动 1449797
关于科研通互助平台的介绍 1425561