亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Ultrafast Intelligent Sensor for Integrated Biological Fluorescence Imaging and Recognition

超短脉冲 荧光 纳米技术 材料科学 计算机科学 光学 物理 激光器
作者
Yuqing Jian,Wei Gao,Qin Yue,Hao Guo,Xiaoyu Wu,Zhenyan Jia,Huan Fei Wen,Zhonghao Li,Zongmin Ma,Xin Li,Jun Tang,Jing Wang
出处
期刊:ACS Sensors [American Chemical Society]
标识
DOI:10.1021/acssensors.4c01839
摘要

Fluorescence imaging and recognition are core technologies in targeted medicine, pathological surgery, and biomedicine. However, current imaging and recognition systems are separate, requiring repeated data transfers for imaging and recognition that lead to delays and inefficiency, hindering the capture of rapidly changing physiological processes and biological phenomena. To address these problems, we propose an integrated intelligent sensor for biological fluorescence imaging and ultrafast recognition. This sensor integrates an imaging system based on a photodetector array and a recognition system based on neural networks on a single chip, featuring a highly compact structure, a continuously adjustable optical response, and reconfigurable electrical performance. The unified architecture of the imaging and recognition systems enables ultrafast recognition (19.63 μs) of tumor margins. Additionally, the special organic materials and bulk heterojunction structure endow the photodetector array with strong wavelength dependence, achieving high specific detectivity (3.06 × 1012 Jones) in the narrowband near-infrared range commonly used in biomedical imaging (600–800 nm). After training, the sensor can accurately recognize biological fluorescence edges in real time, even under interference from other colored light noise. Benefiting from its rapidity and high accuracy, we demonstrated a simulated surgical experiment showcasing tumor edge fluorescence imaging, recognition, and cutting. This integrated approach holds the potential to establish a novel paradigm for designing and manufacturing intelligent medical sensors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肥牛完成签到,获得积分10
4秒前
NexusExplorer应助黄晶晶采纳,获得10
7秒前
Lucas应助肥牛采纳,获得10
10秒前
16秒前
qianyixingchen完成签到 ,获得积分10
19秒前
曦耀发布了新的文献求助30
20秒前
王某完成签到 ,获得积分10
23秒前
23秒前
25秒前
30秒前
务实擎汉完成签到,获得积分10
34秒前
level完成签到 ,获得积分10
36秒前
啦啦啦蛤蛤蛤完成签到 ,获得积分10
38秒前
40秒前
yuki完成签到 ,获得积分10
45秒前
maolao发布了新的文献求助10
45秒前
TG303完成签到,获得积分10
55秒前
maolao完成签到,获得积分10
56秒前
1分钟前
Ava应助小巧寒烟采纳,获得10
1分钟前
hqy发布了新的文献求助10
1分钟前
动听的莫茗完成签到 ,获得积分20
1分钟前
无情小杨完成签到,获得积分20
1分钟前
1分钟前
李健应助科研通管家采纳,获得10
1分钟前
1分钟前
打打应助科研通管家采纳,获得30
1分钟前
1分钟前
动听的莫茗关注了科研通微信公众号
1分钟前
epmoct完成签到 ,获得积分10
1分钟前
黄晶晶完成签到 ,获得积分10
1分钟前
Cloud完成签到 ,获得积分10
1分钟前
是清清子z耶完成签到,获得积分10
1分钟前
小豆芽完成签到,获得积分10
1分钟前
1分钟前
小巧寒烟发布了新的文献求助10
1分钟前
Anna完成签到 ,获得积分10
1分钟前
2分钟前
小巧寒烟完成签到,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534135
求助须知:如何正确求助?哪些是违规求助? 4622256
关于积分的说明 14582179
捐赠科研通 4562367
什么是DOI,文献DOI怎么找? 2500155
邀请新用户注册赠送积分活动 1479721
关于科研通互助平台的介绍 1450795