已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Semi‐supervised medical image segmentation network based on mutual learning

计算机科学 人工智能 分割 机器学习 医学影像学 人工神经网络 相互信息 图像分割 可靠性(半导体) 模式识别(心理学) 图像(数学) 数据挖掘 量子力学 物理 功率(物理)
作者
Junmei Sun,Tianyang Wang,Meixi Wang,Xiumei Li,Yingying Xu
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17547
摘要

Abstract Background Semi‐supervised learning provides an effective means to address the challenge of insufficient labeled data in medical image segmentation tasks. However, when a semi‐supervised segmentation model is overfitted and exhibits cognitive bias, its performance will deteriorate. Errors stemming from cognitive bias can quickly amplify and become difficult to correct during the training process of neural networks, resulting in the continuous accumulation of erroneous knowledge. Purpose To address the issue of error accumulation, a novel learning strategy is required to enhance the accuracy of medical image segmentation. Methods This paper proposes a semi‐supervised medical image segmentation network based on mutual learning (MLNet) to alleviate the issue of continuous accumulation of erroneous knowledge. The MLNet adopts a teacher‐student network as the backbone framework, training student and teacher networks on labeled data and mutually updating network parameter weights, enabling the two models to learn from each other. Additionally, an image partial exchange algorithm (IPE) as an appropriate perturbation addition method is proposed to reduce the introduction of erroneous information and the disruption to the contextual information of the image. Results In the 10% labeled experiment on the ACDC dataset, our Dice coefficient reached 89.48%, a 9.28% improvement over the baseline model. In the 10% labeled experiment on the BraTS2019 dataset, the proposed method still performs exceptionally well, achieving 84.56%, surpassing other comparative methods. Conclusions Compared with other methods, experimental results demonstrate that our approach achieves optimal performance across all metrics, proving its effectiveness and reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Li完成签到,获得积分10
2秒前
萌小鱼完成签到 ,获得积分10
3秒前
zdyfychenyan完成签到 ,获得积分20
3秒前
小马甲应助曹能豪采纳,获得10
7秒前
小北完成签到,获得积分10
8秒前
8秒前
immunity完成签到,获得积分10
13秒前
14秒前
Lucas应助赤恩采纳,获得10
15秒前
曹能豪发布了新的文献求助10
17秒前
Virtual应助life采纳,获得20
17秒前
Hanny发布了新的文献求助30
18秒前
18秒前
沸腾的大海完成签到,获得积分10
21秒前
zdyfychenyan关注了科研通微信公众号
22秒前
22秒前
外向的如冰完成签到,获得积分10
23秒前
26秒前
27秒前
SUNNYONE完成签到 ,获得积分10
28秒前
天天快乐应助科研通管家采纳,获得10
28秒前
脑洞疼应助科研通管家采纳,获得10
28秒前
小马甲应助科研通管家采纳,获得10
28秒前
思源应助科研通管家采纳,获得10
28秒前
单薄绿竹完成签到,获得积分10
29秒前
life完成签到,获得积分10
29秒前
潇洒的语蝶完成签到 ,获得积分10
31秒前
32秒前
赤恩发布了新的文献求助10
32秒前
32秒前
科研通AI5应助泥巴采纳,获得10
32秒前
多久上课发布了新的文献求助10
33秒前
Touching完成签到 ,获得积分10
33秒前
34秒前
深情安青应助多久上课采纳,获得10
36秒前
多发paper啊完成签到,获得积分10
36秒前
科研通AI6应助小憨憨采纳,获得10
37秒前
life关注了科研通微信公众号
40秒前
充电宝应助啰友痕武次子采纳,获得10
41秒前
小蘑菇完成签到 ,获得积分10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4581261
求助须知:如何正确求助?哪些是违规求助? 3999239
关于积分的说明 12380921
捐赠科研通 3673784
什么是DOI,文献DOI怎么找? 2024768
邀请新用户注册赠送积分活动 1058578
科研通“疑难数据库(出版商)”最低求助积分说明 945295