Semi‐supervised medical image segmentation network based on mutual learning

计算机科学 人工智能 分割 机器学习 医学影像学 人工神经网络 相互信息 图像分割 可靠性(半导体) 模式识别(心理学) 图像(数学) 数据挖掘 量子力学 物理 功率(物理)
作者
Junmei Sun,Tianyang Wang,Meixi Wang,Xiumei Li,Yingying Xu
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17547
摘要

Abstract Background Semi‐supervised learning provides an effective means to address the challenge of insufficient labeled data in medical image segmentation tasks. However, when a semi‐supervised segmentation model is overfitted and exhibits cognitive bias, its performance will deteriorate. Errors stemming from cognitive bias can quickly amplify and become difficult to correct during the training process of neural networks, resulting in the continuous accumulation of erroneous knowledge. Purpose To address the issue of error accumulation, a novel learning strategy is required to enhance the accuracy of medical image segmentation. Methods This paper proposes a semi‐supervised medical image segmentation network based on mutual learning (MLNet) to alleviate the issue of continuous accumulation of erroneous knowledge. The MLNet adopts a teacher‐student network as the backbone framework, training student and teacher networks on labeled data and mutually updating network parameter weights, enabling the two models to learn from each other. Additionally, an image partial exchange algorithm (IPE) as an appropriate perturbation addition method is proposed to reduce the introduction of erroneous information and the disruption to the contextual information of the image. Results In the 10% labeled experiment on the ACDC dataset, our Dice coefficient reached 89.48%, a 9.28% improvement over the baseline model. In the 10% labeled experiment on the BraTS2019 dataset, the proposed method still performs exceptionally well, achieving 84.56%, surpassing other comparative methods. Conclusions Compared with other methods, experimental results demonstrate that our approach achieves optimal performance across all metrics, proving its effectiveness and reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿梨完成签到,获得积分10
刚刚
卞柳云完成签到 ,获得积分10
1秒前
兴奋的铃铛完成签到,获得积分10
3秒前
xu1227完成签到,获得积分10
3秒前
4秒前
李阳完成签到 ,获得积分10
4秒前
Y神完成签到 ,获得积分10
7秒前
黎明之光发布了新的文献求助10
7秒前
ding应助高贵熊猫采纳,获得10
7秒前
飞鱼完成签到 ,获得积分10
8秒前
9秒前
Maydalian发布了新的文献求助10
9秒前
脑洞疼应助活泼的萝卜采纳,获得50
9秒前
烟花应助kkkk采纳,获得10
11秒前
kai发布了新的文献求助10
12秒前
15秒前
完美世界应助SiyangGuo采纳,获得10
15秒前
予秋完成签到,获得积分10
16秒前
北侨发布了新的文献求助10
17秒前
17秒前
南屿完成签到,获得积分10
17秒前
jify完成签到,获得积分10
17秒前
GGbond完成签到,获得积分10
18秒前
111应助含蓄的问薇采纳,获得10
20秒前
雪白砖家发布了新的文献求助30
20秒前
22秒前
ss13l完成签到,获得积分10
23秒前
kkkk完成签到,获得积分10
24秒前
北侨完成签到,获得积分10
26秒前
30秒前
30秒前
32秒前
浮游应助呐呐呐采纳,获得10
32秒前
33秒前
研友_VZG7GZ应助李义志采纳,获得10
34秒前
hhhh发布了新的文献求助10
34秒前
承泽发布了新的文献求助10
34秒前
35秒前
36秒前
田宇发布了新的文献求助20
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5306557
求助须知:如何正确求助?哪些是违规求助? 4452324
关于积分的说明 13854559
捐赠科研通 4339805
什么是DOI,文献DOI怎么找? 2382859
邀请新用户注册赠送积分活动 1377728
关于科研通互助平台的介绍 1345407