Semi‐supervised medical image segmentation network based on mutual learning

计算机科学 人工智能 分割 机器学习 医学影像学 人工神经网络 相互信息 图像分割 可靠性(半导体) 模式识别(心理学) 图像(数学) 数据挖掘 量子力学 物理 功率(物理)
作者
Junmei Sun,Tianyang Wang,Meixi Wang,Xiumei Li,Yingying Xu
出处
期刊:Medical Physics [Wiley]
卷期号:52 (3): 1589-1600 被引量:3
标识
DOI:10.1002/mp.17547
摘要

Abstract Background Semi‐supervised learning provides an effective means to address the challenge of insufficient labeled data in medical image segmentation tasks. However, when a semi‐supervised segmentation model is overfitted and exhibits cognitive bias, its performance will deteriorate. Errors stemming from cognitive bias can quickly amplify and become difficult to correct during the training process of neural networks, resulting in the continuous accumulation of erroneous knowledge. Purpose To address the issue of error accumulation, a novel learning strategy is required to enhance the accuracy of medical image segmentation. Methods This paper proposes a semi‐supervised medical image segmentation network based on mutual learning (MLNet) to alleviate the issue of continuous accumulation of erroneous knowledge. The MLNet adopts a teacher‐student network as the backbone framework, training student and teacher networks on labeled data and mutually updating network parameter weights, enabling the two models to learn from each other. Additionally, an image partial exchange algorithm (IPE) as an appropriate perturbation addition method is proposed to reduce the introduction of erroneous information and the disruption to the contextual information of the image. Results In the 10% labeled experiment on the ACDC dataset, our Dice coefficient reached 89.48%, a 9.28% improvement over the baseline model. In the 10% labeled experiment on the BraTS2019 dataset, the proposed method still performs exceptionally well, achieving 84.56%, surpassing other comparative methods. Conclusions Compared with other methods, experimental results demonstrate that our approach achieves optimal performance across all metrics, proving its effectiveness and reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
庆何逐完成签到,获得积分10
刚刚
赘婿应助陈隐隐约约采纳,获得10
刚刚
XIAOFA完成签到,获得积分10
1秒前
1秒前
王孟玲完成签到,获得积分10
1秒前
1秒前
ccy2023发布了新的文献求助10
3秒前
3秒前
高高手应助好像是肥阳采纳,获得10
3秒前
4秒前
zzzmmm发布了新的文献求助10
4秒前
5秒前
酷波er应助跳跃的千凡采纳,获得10
5秒前
辣辣发布了新的文献求助10
5秒前
迷路的茗茗完成签到,获得积分10
5秒前
谷六发布了新的文献求助10
5秒前
情怀应助我爱科研采纳,获得10
6秒前
漂亮谷雪完成签到,获得积分10
6秒前
6秒前
wang1030发布了新的文献求助50
6秒前
7秒前
Genetrix应助Jenny采纳,获得30
8秒前
9秒前
lijiajun发布了新的文献求助10
9秒前
9秒前
9秒前
litieniu完成签到 ,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
核桃发布了新的文献求助10
11秒前
彭于晏应助茶米采纳,获得10
11秒前
和谐无敌完成签到,获得积分10
11秒前
帝释天I发布了新的文献求助10
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
13秒前
wyq完成签到,获得积分10
13秒前
东方傲儿发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784255
求助须知:如何正确求助?哪些是违规求助? 5681721
关于积分的说明 15463641
捐赠科研通 4913544
什么是DOI,文献DOI怎么找? 2644711
邀请新用户注册赠送积分活动 1592596
关于科研通互助平台的介绍 1547133