Semi‐supervised medical image segmentation network based on mutual learning

计算机科学 人工智能 分割 机器学习 医学影像学 人工神经网络 相互信息 图像分割 可靠性(半导体) 模式识别(心理学) 图像(数学) 数据挖掘 量子力学 物理 功率(物理)
作者
Junmei Sun,Tianyang Wang,Meixi Wang,Xiumei Li,Yingying Xu
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17547
摘要

Abstract Background Semi‐supervised learning provides an effective means to address the challenge of insufficient labeled data in medical image segmentation tasks. However, when a semi‐supervised segmentation model is overfitted and exhibits cognitive bias, its performance will deteriorate. Errors stemming from cognitive bias can quickly amplify and become difficult to correct during the training process of neural networks, resulting in the continuous accumulation of erroneous knowledge. Purpose To address the issue of error accumulation, a novel learning strategy is required to enhance the accuracy of medical image segmentation. Methods This paper proposes a semi‐supervised medical image segmentation network based on mutual learning (MLNet) to alleviate the issue of continuous accumulation of erroneous knowledge. The MLNet adopts a teacher‐student network as the backbone framework, training student and teacher networks on labeled data and mutually updating network parameter weights, enabling the two models to learn from each other. Additionally, an image partial exchange algorithm (IPE) as an appropriate perturbation addition method is proposed to reduce the introduction of erroneous information and the disruption to the contextual information of the image. Results In the 10% labeled experiment on the ACDC dataset, our Dice coefficient reached 89.48%, a 9.28% improvement over the baseline model. In the 10% labeled experiment on the BraTS2019 dataset, the proposed method still performs exceptionally well, achieving 84.56%, surpassing other comparative methods. Conclusions Compared with other methods, experimental results demonstrate that our approach achieves optimal performance across all metrics, proving its effectiveness and reliability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助YBOH采纳,获得30
刚刚
小蘑菇应助zyp采纳,获得10
1秒前
神勇友易完成签到,获得积分10
1秒前
自然的小珍完成签到,获得积分10
2秒前
乐乐应助华鹰采纳,获得10
4秒前
4秒前
bkagyin应助Square采纳,获得10
4秒前
聪仔应助小芳儿采纳,获得10
4秒前
皇甫契发布了新的文献求助10
5秒前
风华正茂发布了新的文献求助10
5秒前
CipherSage应助Lupoate采纳,获得50
5秒前
行者完成签到,获得积分10
5秒前
耍酷的白梦完成签到,获得积分10
6秒前
YBOH完成签到,获得积分10
7秒前
xjcy应助时尚凡雁采纳,获得10
8秒前
8秒前
科研通AI2S应助清脆的访烟采纳,获得10
9秒前
10秒前
11秒前
YBOH发布了新的文献求助30
12秒前
Hello应助科研通管家采纳,获得10
13秒前
科目三应助科研通管家采纳,获得10
13秒前
13秒前
小马甲应助科研通管家采纳,获得10
13秒前
搜集达人应助科研通管家采纳,获得30
13秒前
852应助科研通管家采纳,获得10
13秒前
852应助科研通管家采纳,获得10
14秒前
彭于晏应助科研通管家采纳,获得10
14秒前
14秒前
小马甲应助科研通管家采纳,获得10
14秒前
SciGPT应助科研通管家采纳,获得10
14秒前
YYC2022应助科研通管家采纳,获得10
14秒前
酷波er应助科研通管家采纳,获得10
14秒前
田様应助科研通管家采纳,获得10
14秒前
RenS发布了新的文献求助30
15秒前
昨夜書完成签到 ,获得积分10
15秒前
16秒前
科研通AI2S应助标致的半邪采纳,获得10
17秒前
19秒前
22秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260352
求助须知:如何正确求助?哪些是违规求助? 2901579
关于积分的说明 8316158
捐赠科研通 2571164
什么是DOI,文献DOI怎么找? 1396847
科研通“疑难数据库(出版商)”最低求助积分说明 653584
邀请新用户注册赠送积分活动 632008