Tunable phase behaviors of diblock copolyelectrolytes under alternating electric fields: A coarse-grained molecular dynamics study

电场 材料科学 层状结构 相变 方波 分子动力学 相(物质) 凝聚态物理 均方位移 化学物理 物理 电压 复合材料 量子力学
作者
Haiyang Huo,Wanchen Zhao,Xiaozheng Duan,Zhao‐Yan Sun
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:162 (1)
标识
DOI:10.1063/5.0243907
摘要

Diblock copolyelectrolytes have significant potential in applications such as solid-state single-ion conductors, but precisely controlling their nanostructures for efficient ion transport remains a challenge. In this study, we explore the phase behavior and microphase transitions of AX BY-type diblock copolyelectrolytes under alternating electric fields using coarse-grained molecular dynamics simulations. We systematically investigate the effects of various electric field features, including unipolar and bipolar square-waves, as well as offset and non-offset sine-waves, focusing on how field strength and period influence the self-assembling morphology of the copolyelectrolytes. Under unipolar square-waves, both the lamellar and cylindrical phase regions expand, while the disordered phase regions shrink as the field strength increases. In contrast, bipolar square-waves maintain lamellar structures more robustly, with reversed stretching behavior observed in the polymer chains. As the electric field period exceeds a critical value, both waveforms converge with the results seen under constant electric fields. In addition, sine-waves induce smoother phase transitions, expanding the ordered phase regions, particularly the cylindrical phase, due to continuous field variation. We further examine the detailed structural and dynamic properties, such as mean-square displacement, polymer conformation, and chain orientation during these transitions. This work provides fundamental insights into the structural regulation of diblock copolyelectrolytes under oscillating electric fields, guiding the design of advanced polymeric electrolytes with tailored nanostructures.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
Liming发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
5秒前
英俊的铭应助wangyiming采纳,获得30
7秒前
8秒前
lallalal完成签到,获得积分20
9秒前
ANGEK发布了新的文献求助10
10秒前
cc发布了新的文献求助10
11秒前
打打应助机灵的嘉熙采纳,获得10
11秒前
12秒前
情怀应助缓慢千易采纳,获得10
12秒前
乐乐应助Liming采纳,获得10
13秒前
59发布了新的文献求助10
13秒前
15秒前
17秒前
Owen应助木槿花采纳,获得30
17秒前
烟花应助wei采纳,获得10
17秒前
小皮蛋儿完成签到,获得积分10
17秒前
18秒前
ANGEK完成签到,获得积分10
18秒前
streamer发布了新的文献求助10
19秒前
炙热的小小完成签到 ,获得积分10
20秒前
潇洒雁枫完成签到,获得积分10
22秒前
lallalal发布了新的文献求助10
23秒前
sanbai-li应助美满鸭子采纳,获得10
24秒前
25秒前
李健的粉丝团团长应助LWQ采纳,获得10
29秒前
Owen应助smallyu采纳,获得10
29秒前
cuber完成签到 ,获得积分10
30秒前
Eason完成签到,获得积分10
30秒前
希望天下0贩的0应助荣枫采纳,获得10
32秒前
LH发布了新的文献求助10
32秒前
36秒前
36秒前
弈迩栅完成签到 ,获得积分10
37秒前
薛wen晶完成签到 ,获得积分10
37秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Product Class 33: N-Arylhydroxylamines 300
Machine Learning in Chemistry 300
Experimental research on the vibration of aviation elbow tube by 21~35 MPa fluid pressure pulsation 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3388003
求助须知:如何正确求助?哪些是违规求助? 3000527
关于积分的说明 8791704
捐赠科研通 2686552
什么是DOI,文献DOI怎么找? 1471700
科研通“疑难数据库(出版商)”最低求助积分说明 680474
邀请新用户注册赠送积分活动 673193