Deep Policy Iteration with Integer Programming for Inventory Management

计算机科学 数学优化 启发式 库存控制 水准点(测量) 强化学习 运筹学 人工智能 数学 大地测量学 地理
作者
Pavithra Harsha,Ashish Jagmohan,Jayant Kalagnanam,Brian Quanz,Divya Singhvi
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/msom.2022.0617
摘要

Problem definition: In this paper, we present a reinforcement learning (RL)-based framework for optimizing long-term discounted reward problems with large combinatorial action space and state dependent constraints. These characteristics are common to many operations management problems, for example, network inventory replenishment, where managers have to deal with uncertain demand, lost sales, and capacity constraints that results in more complex feasible action spaces. Our proposed programmable actor RL (PARL) uses a deep-policy iteration method that leverages neural networks to approximate the value function and combines it with mathematical programming and sample average approximation to solve the per-step-action optimally while accounting for combinatorial action spaces and state-dependent constraint sets. Methodology/results: We then show how the proposed methodology can be applied to complex inventory replenishment problems where analytical solutions are intractable. We also benchmark the proposed algorithm against state-of-the-art RL algorithms and commonly used replenishment heuristics and find that the proposed algorithm considerably outperforms existing methods by as much as 14.7% on average in various complex supply chain settings. Managerial implications: We find that this improvement in performance of PARL over benchmark algorithms can be directly attributed to better inventory cost management, especially in inventory constrained settings. Furthermore, in the simpler setting where optimal replenishment policy is tractable or known near optimal heuristics exist, we find that the RL-based policies can learn near optimal policies. Finally, to make RL algorithms more accessible for inventory management researchers, we also discuss the development of a modular Python library that can be used to test the performance of RL algorithms with various supply chain structures. This library can spur future research in developing practical and near-optimal algorithms for inventory management problems. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2022.0617 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助徐乞采纳,获得10
2秒前
善学以致用应助徐乞采纳,获得10
2秒前
汉堡包应助徐乞采纳,获得10
2秒前
科研通AI2S应助徐乞采纳,获得10
2秒前
wanci应助徐乞采纳,获得10
2秒前
孙老师完成签到 ,获得积分10
3秒前
zhangjianzeng完成签到 ,获得积分10
9秒前
steven完成签到 ,获得积分10
17秒前
mzhang2完成签到 ,获得积分10
25秒前
小柯基学从零学起完成签到 ,获得积分10
34秒前
35秒前
37秒前
凌晨五点的完成签到,获得积分10
40秒前
奇妙淞发布了新的文献求助30
41秒前
42秒前
雨中行远发布了新的文献求助10
43秒前
武雨寒完成签到 ,获得积分20
49秒前
徐乞发布了新的文献求助10
50秒前
MOON完成签到,获得积分10
52秒前
54秒前
stephen完成签到 ,获得积分10
55秒前
111111完成签到,获得积分10
57秒前
蕉鲁诺蕉巴纳完成签到,获得积分0
1分钟前
临时演员完成签到,获得积分0
1分钟前
皓轩完成签到 ,获得积分10
1分钟前
Polymer72应助科研通管家采纳,获得10
1分钟前
Skywings完成签到,获得积分10
1分钟前
1分钟前
文心同学完成签到,获得积分10
1分钟前
快乐的蓝完成签到 ,获得积分10
1分钟前
dreamwalk完成签到 ,获得积分10
1分钟前
清风完成签到 ,获得积分10
1分钟前
可爱的函函应助Skywings采纳,获得10
1分钟前
迅速的雨泽完成签到,获得积分20
1分钟前
1分钟前
hhh2018687完成签到,获得积分10
1分钟前
1分钟前
失眠的诗蕊完成签到,获得积分0
1分钟前
JUN完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Treatise on Estuarine and Coastal Science (Second Edition) Volume 3: Biogeochemical Cycling 2024 500
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3341900
求助须知:如何正确求助?哪些是违规求助? 2969256
关于积分的说明 8637992
捐赠科研通 2648930
什么是DOI,文献DOI怎么找? 1450469
科研通“疑难数据库(出版商)”最低求助积分说明 671917
邀请新用户注册赠送积分活动 660991