亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Policy Iteration with Integer Programming for Inventory Management

计算机科学 数学优化 启发式 库存控制 水准点(测量) 强化学习 运筹学 人工智能 数学 大地测量学 地理
作者
Pavithra Harsha,Ashish Jagmohan,Jayant Kalagnanam,Brian Quanz,Divya Singhvi
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
被引量:1
标识
DOI:10.1287/msom.2022.0617
摘要

Problem definition: In this paper, we present a reinforcement learning (RL)-based framework for optimizing long-term discounted reward problems with large combinatorial action space and state dependent constraints. These characteristics are common to many operations management problems, for example, network inventory replenishment, where managers have to deal with uncertain demand, lost sales, and capacity constraints that results in more complex feasible action spaces. Our proposed programmable actor RL (PARL) uses a deep-policy iteration method that leverages neural networks to approximate the value function and combines it with mathematical programming and sample average approximation to solve the per-step-action optimally while accounting for combinatorial action spaces and state-dependent constraint sets. Methodology/results: We then show how the proposed methodology can be applied to complex inventory replenishment problems where analytical solutions are intractable. We also benchmark the proposed algorithm against state-of-the-art RL algorithms and commonly used replenishment heuristics and find that the proposed algorithm considerably outperforms existing methods by as much as 14.7% on average in various complex supply chain settings. Managerial implications: We find that this improvement in performance of PARL over benchmark algorithms can be directly attributed to better inventory cost management, especially in inventory constrained settings. Furthermore, in the simpler setting where optimal replenishment policy is tractable or known near optimal heuristics exist, we find that the RL-based policies can learn near optimal policies. Finally, to make RL algorithms more accessible for inventory management researchers, we also discuss the development of a modular Python library that can be used to test the performance of RL algorithms with various supply chain structures. This library can spur future research in developing practical and near-optimal algorithms for inventory management problems. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2022.0617 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
19秒前
HYQ完成签到 ,获得积分10
22秒前
43秒前
欣喜的人龙完成签到 ,获得积分10
44秒前
VERITAS发布了新的文献求助10
48秒前
Foxjker完成签到 ,获得积分10
58秒前
复杂的夜香完成签到 ,获得积分10
1分钟前
xpqiu完成签到,获得积分10
1分钟前
orixero应助libob采纳,获得10
1分钟前
慕青应助科研通管家采纳,获得30
1分钟前
1分钟前
1分钟前
1分钟前
佳佳发布了新的文献求助10
1分钟前
1分钟前
小鹿完成签到,获得积分10
2分钟前
风趣煎蛋发布了新的文献求助10
2分钟前
2分钟前
风趣煎蛋完成签到,获得积分10
2分钟前
小鹿发布了新的文献求助10
2分钟前
2分钟前
2分钟前
testmanfuxk完成签到,获得积分10
2分钟前
2分钟前
libob发布了新的文献求助10
2分钟前
3分钟前
思源应助zsp采纳,获得30
3分钟前
3分钟前
领导范儿应助556采纳,获得10
3分钟前
Persist6578完成签到 ,获得积分10
3分钟前
半城微凉应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
ljx完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
fx完成签到 ,获得积分10
4分钟前
ZZICU完成签到,获得积分10
4分钟前
文献完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965659
求助须知:如何正确求助?哪些是违规求助? 3510902
关于积分的说明 11155538
捐赠科研通 3245353
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874161
科研通“疑难数据库(出版商)”最低求助积分说明 804214