材料科学
面(心理学)
氧化还原
阴极
氧气
氧化物
离子
钠
调制(音乐)
无机化学
化学工程
纳米技术
冶金
有机化学
化学
心理学
社会心理学
哲学
人格
物理化学
工程类
五大性格特征
美学
作者
Yiran Sun,Junying Weng,Pengfei Zhou,Wenyong Yuan,Yihao Pan,Xiaozhong Wu,Jinchuan Zhou,Fangyi Cheng
标识
DOI:10.1002/adma.202410575
摘要
Abstract Layered oxides with active oxygen redox are attractive cathode materials for sodium‐ion batteries (SIBs) due to high capacity but suffer from rapid capacity/voltage deterioration and sluggish reaction kinetics stemming from lattice oxygen release, interfacial side reactions, and structural reconstruction. Herein, a synergistic strategy of crystal‐facet modulation and fluorinated interfacial engineering is proposed to achieve high capacity, superior rate capability, and long cycle stability in Na 0.67 Li 0.24 Mn 0.76 O 2 . The synthesized single‐crystal Na 0.67 Li 0.24 Mn 0.76 O 2 (NLMO{010}) featuring increased {010} active facet exposure exhibits faster anionic redox kinetics and delivers a high capacity (272.4 mAh g −1 at 10 mA g −1 ) with superior energy density (713.9 Wh kg −1 ) and rate performance (116.4 mAh g −1 at 1 A g −1 ). Moreover, by incorporating N‐Fluorobenzenesulfonimide (NFBS) as electrolyte additive, the NLMO{010} cathode retains 84.6% capacity after 400 cycles at 500 mA g −1 with alleviated voltage fade (0.27 mV per cycle). Combined in situ analysis and theoretical calculations unveil dual functionality of NFBS, which results in thin yet durable fluorinated interfaces on the NLMO{010} cathode and hard carbon anode and scavenges highly reactive oxygen species. The results indicate the importance of fast‐ion‐transfer facet engineering and fluorinated electrolyte formulation to enhance oxygen redox‐active cathode materials for high‐energy‐density SIBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI