Evaluations of the Perturbation Resistance of the Deep-Learning-Based Ligand Conformation Optimization Algorithm

稳健性(进化) 优化算法 算法 人工智能 配体(生物化学) 蛋白质-配体对接 计算机科学 化学 数学 计算化学 数学优化 分子动力学 虚拟筛选 生物化学 受体 基因
作者
Minghui Xin,Zechen Wang,Zhihao Wang,Yuanyuan Qu,Yanmei Yang,Yongqiang Li,Mingwen Zhao,Liangzhen Zheng,Yuguang Mu,Weifeng Li
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c01096
摘要

In recent years, the deep learning (DL) technique has rapidly developed and shown great success in scoring the protein-ligand binding affinities. The protein-ligand conformation optimization based on DL-derived scoring functions holds broad application prospects, for instance, drug design and enzyme engineering. In this study, we evaluated the robustness of a DL-based ligand conformation optimization protocol (DeepRMSD+Vina) for optimizing structures with input perturbations by examining the predicted ligand binding poses and scoring. Our results clearly indicated that compared to traditional optimization algorithms (such as Prime MM-GBSA and Vina optimization), DeepRMSD+Vina exhibits higher performance when treating diverse protein-ligand cases. The DeepRMSD+Vina is robust and can always generate the correct binding structures even if perturbations (up to 3 Å) are introduced to the input structure. The success rate is 62% for perturbation with a RMSD within 2-3 Å. However, the success rate dramatically drops to 11% for large perturbations, with RMSD extending to 3-4 Å. Furthermore, compared to the widely used optimization protocol of AutoDock Vina, the DL-generated conformation shows a balanced performance for all of the systems under examination. Overall, the DL-based DeepRMSD+Vina is unarguably more reliable than the traditional methods, which is attributed to the physically inspired design of the neural networks in DeepRMSD+Vina where the distance-transformed features describing the atomic interactions between the protein and the ligand have been explicitly considered and modeled. The outstanding robustness of the DL-based ligand conformational optimization algorithm further validates its superiority in the field of conformational optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助曲初雪采纳,获得10
1秒前
思源应助学术小白w采纳,获得10
1秒前
1秒前
2秒前
DG完成签到,获得积分10
2秒前
redking完成签到,获得积分10
2秒前
英俊的铭应助专注的冬天采纳,获得10
2秒前
Elliot_315发布了新的文献求助10
2秒前
2秒前
科研通AI5应助yang929采纳,获得10
3秒前
吕佳完成签到 ,获得积分10
3秒前
嵇冷雪发布了新的文献求助10
3秒前
我是老大应助贪玩的戒指采纳,获得30
3秒前
庾稀完成签到,获得积分20
3秒前
whandzxl发布了新的文献求助10
4秒前
4秒前
wljwljwlj完成签到 ,获得积分10
4秒前
早日毕业完成签到,获得积分10
5秒前
充电宝应助鄂夏云采纳,获得10
5秒前
6秒前
安和桥北完成签到 ,获得积分10
6秒前
李健应助郭七采纳,获得10
6秒前
decademe完成签到,获得积分10
6秒前
yww完成签到,获得积分10
7秒前
7秒前
dff完成签到,获得积分10
8秒前
8秒前
hhj发布了新的文献求助10
8秒前
9秒前
10秒前
干净海秋完成签到,获得积分10
10秒前
YYJ25完成签到,获得积分10
11秒前
闵其其完成签到 ,获得积分10
11秒前
灰烬使者完成签到,获得积分10
12秒前
酷波er应助有匪采纳,获得10
12秒前
大白完成签到,获得积分10
12秒前
Pamburger完成签到,获得积分10
12秒前
13秒前
13秒前
泡泡完成签到,获得积分20
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
The Biomechanics of Batting, Swinging, and Hitting 200
Treatment of Primary Glomerulonephritis Third Edition 200
Handbook of Cosmetic Science and Technology 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3695542
求助须知:如何正确求助?哪些是违规求助? 3247000
关于积分的说明 9853274
捐赠科研通 2958682
什么是DOI,文献DOI怎么找? 1622209
邀请新用户注册赠送积分活动 767855
科研通“疑难数据库(出版商)”最低求助积分说明 741293