Identification of two distinct clusters in membranous lupus nephritis patients: recognition of a high-risk profile based on unsupervised analysis

医学 狼疮性肾炎 内科学 肌酐 回顾性队列研究 系统性红斑狼疮 队列 胃肠病学 疾病
作者
Zhipeng Wang,Xiang Wang,Yiqin Wang,Jianwen Yu,Xin Wang,Hongjian Ye,Haishan Wu,Ruihan Tang,Xi Xia,Wei Chen
出处
期刊:Nephrology Dialysis Transplantation [Oxford University Press]
标识
DOI:10.1093/ndt/gfae295
摘要

Abstract Background and hypothesis Membranous lupus nephritis (MLN) traditionally includes class V (alone) and may be associated with other classes (III or IV). The clinical, therapeutic and prognosis relevance of the classification remains controversial. Methods A retrospective cohort of 412 MLN patients from the First Affiliated Hospital of Sun-Yat Sen University was followed for a median of 65.68 (IQR: 23.13–131.70) months. The primary outcomes were adverse renal events including all-cause death and end-stage renal diseases (ESRD). Phenotypes were identified and validated using unsupervised clustering analysis (K-means), Principal component analysis (PCA) and decision tree analysis. Results Distinct clinical and pathological differences were noted for the traditional Class IV + V, the traditional Class V + III and Class V exhibited high similarities in clinical features and prognosis (P = 0.074). K-means clustering revealed high-risk (n = 180) and low-risk groups (n = 232), with significant differences in adverse renal outcomes (9.2% vs. 4.1%, P < 0.001). To recognize the high-risk profile of MLN patients, a decision tree based on Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) Score, hemoglobin, serum creatinine, traditional classification, and activity index of renal biopsy accurately clustered patients in the development (95.8% accuracy) and validation (87.1% accuracy) cohorts. Conclusions Two novel phenotypic clusters, more predictive than traditional classifications, enhance high-risk profile identification and prognostic accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Echo完成签到,获得积分10
刚刚
zmmmm发布了新的文献求助10
1秒前
雪山飞龙发布了新的文献求助30
1秒前
1秒前
Jenny应助小土豆采纳,获得50
1秒前
情怀应助布鲁鲁采纳,获得10
1秒前
1秒前
悦耳寒松发布了新的文献求助10
2秒前
2秒前
霍嘉文完成签到,获得积分10
2秒前
3秒前
bluesiryao发布了新的文献求助10
3秒前
李爱国应助23采纳,获得10
4秒前
4秒前
SHJ发布了新的文献求助10
4秒前
开心的幻柏完成签到 ,获得积分10
4秒前
大神完成签到 ,获得积分20
4秒前
4秒前
5秒前
5秒前
闪闪的YOSH完成签到,获得积分10
5秒前
Jimmy完成签到,获得积分10
5秒前
仁爱书白完成签到,获得积分10
6秒前
6秒前
孤独的珩发布了新的文献求助10
7秒前
孙悦完成签到,获得积分10
8秒前
lu完成签到,获得积分10
8秒前
Rachel发布了新的文献求助10
8秒前
Jimmy发布了新的文献求助10
8秒前
丘比特应助隐形的易巧采纳,获得10
8秒前
仁爱书白发布了新的文献求助10
9秒前
善学以致用应助zhui采纳,获得10
9秒前
9秒前
9秒前
小蘑菇应助拼搏起眸采纳,获得10
9秒前
山止川行完成签到 ,获得积分10
9秒前
9秒前
10秒前
okghy发布了新的文献求助10
10秒前
zcydbttj2011完成签到 ,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794