Identification of two distinct clusters in membranous lupus nephritis patients: recognition of a high-risk profile based on unsupervised analysis

医学 狼疮性肾炎 鉴定(生物学) 计算生物学 模式识别(心理学) 人工智能 生物信息学 疾病 病理 计算机科学 植物 生物
作者
Zhipeng Wang,Xiang Wang,Yiqin Wang,Jianwen Yu,Xin Wang,Hongjian Ye,Haishan Wu,Ruihan Tang,Xi Xia,Wei Chen
出处
期刊:Nephrology Dialysis Transplantation [Oxford University Press]
标识
DOI:10.1093/ndt/gfae295
摘要

ABSTRACT Background and hypothesis Membranous lupus nephritis (MLN) traditionally includes class V (alone), and may be associated with other classes (III or IV). The clinical, therapeutic, and prognostic relevance of the classification remains controversial. Methods A retrospective cohort of 412 MLN patients from the First Affiliated Hospital of Sun-Yat Sen University was followed for a median of 65.68 (interquartile range 23.13–131.70) months. The primary outcomes were adverse renal events including all-cause death and ESRD. Phenotypes were identified and validated using unsupervised clustering analysis (K-means), principal component analysis and decision tree analysis. Results Distinct clinical and pathological differences were noted between the traditional class IV + V and classes V + III and V, while class V + III and class V exhibited high similarities in clinical features and prognosis (P = 0.074). K-means clustering revealed high-risk (n = 180) and low-risk (n = 232) groups, with significant differences in adverse renal outcomes (9.2% vs 4.1%, P < 0.001). To recognize the high-risk profile of MLN patients, a decision tree based on Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) score, hemoglobin, serum creatinine, traditional classification, and activity index of renal biopsy accurately clustered patients in the development (95.8% accuracy) and validation (87.1% accuracy) cohorts. Conclusions Two novel phenotypic clusters, more predictive than traditional classifications, enhance high-risk profile identification and prognostic accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
2秒前
传奇3应助陌上之心采纳,获得10
2秒前
3秒前
丘比特应助如风随水采纳,获得10
3秒前
偶然的风41177完成签到,获得积分10
4秒前
4秒前
Chaiyuan完成签到 ,获得积分0
5秒前
mong完成签到,获得积分10
5秒前
5秒前
正直的半梅完成签到,获得积分10
6秒前
黑白风发布了新的文献求助30
8秒前
神勇语柳完成签到,获得积分10
8秒前
xiaoxixixier完成签到 ,获得积分10
8秒前
科研通AI6应助xyy采纳,获得30
9秒前
大气早晨发布了新的文献求助10
9秒前
Ava应助wang1030采纳,获得10
11秒前
冰激凌发布了新的文献求助10
12秒前
12秒前
胆大璐完成签到 ,获得积分10
13秒前
科研通AI2S应助阔达皮卡丘采纳,获得10
14秒前
14秒前
完美世界应助vily采纳,获得10
14秒前
奶油蜜豆卷完成签到,获得积分10
15秒前
lijiaoyang完成签到,获得积分10
16秒前
Diana完成签到,获得积分10
16秒前
Hello应助hbhbj采纳,获得10
16秒前
16秒前
懵懂小尉完成签到,获得积分10
17秒前
zw发布了新的文献求助10
18秒前
18秒前
JamesPei应助那都通采纳,获得10
19秒前
乐乐应助嗡嗡嗡采纳,获得10
19秒前
泡芙完成签到,获得积分10
20秒前
21秒前
温暖香菱完成签到,获得积分10
21秒前
22秒前
苹果完成签到,获得积分10
22秒前
ruohanyu完成签到 ,获得积分10
22秒前
如风随水发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5530788
求助须知:如何正确求助?哪些是违规求助? 4619762
关于积分的说明 14570057
捐赠科研通 4559290
什么是DOI,文献DOI怎么找? 2498318
邀请新用户注册赠送积分活动 1478269
关于科研通互助平台的介绍 1449838