Identification of two distinct clusters in membranous lupus nephritis patients: recognition of a high-risk profile based on unsupervised analysis

医学 狼疮性肾炎 鉴定(生物学) 计算生物学 模式识别(心理学) 人工智能 生物信息学 疾病 病理 计算机科学 植物 生物
作者
Zhipeng Wang,Xiang Wang,Yiqin Wang,Jianwen Yu,Xin Wang,Hongjian Ye,Haishan Wu,Ruihan Tang,Xi Xia,Wei Chen
出处
期刊:Nephrology Dialysis Transplantation [Oxford University Press]
标识
DOI:10.1093/ndt/gfae295
摘要

ABSTRACT Background and hypothesis Membranous lupus nephritis (MLN) traditionally includes class V (alone), and may be associated with other classes (III or IV). The clinical, therapeutic, and prognostic relevance of the classification remains controversial. Methods A retrospective cohort of 412 MLN patients from the First Affiliated Hospital of Sun-Yat Sen University was followed for a median of 65.68 (interquartile range 23.13–131.70) months. The primary outcomes were adverse renal events including all-cause death and ESRD. Phenotypes were identified and validated using unsupervised clustering analysis (K-means), principal component analysis and decision tree analysis. Results Distinct clinical and pathological differences were noted between the traditional class IV + V and classes V + III and V, while class V + III and class V exhibited high similarities in clinical features and prognosis (P = 0.074). K-means clustering revealed high-risk (n = 180) and low-risk (n = 232) groups, with significant differences in adverse renal outcomes (9.2% vs 4.1%, P < 0.001). To recognize the high-risk profile of MLN patients, a decision tree based on Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) score, hemoglobin, serum creatinine, traditional classification, and activity index of renal biopsy accurately clustered patients in the development (95.8% accuracy) and validation (87.1% accuracy) cohorts. Conclusions Two novel phenotypic clusters, more predictive than traditional classifications, enhance high-risk profile identification and prognostic accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
organicboy发布了新的文献求助10
1秒前
1秒前
一一完成签到,获得积分20
2秒前
123完成签到,获得积分10
2秒前
LaTeXer应助Mic采纳,获得100
3秒前
3秒前
罗尼关注了科研通微信公众号
3秒前
西瓜完成签到,获得积分10
4秒前
4秒前
1111发布了新的文献求助10
5秒前
111发布了新的文献求助10
5秒前
SCI完成签到,获得积分10
5秒前
怕黑书翠完成签到,获得积分20
6秒前
李爱国应助一一采纳,获得10
7秒前
8秒前
ksiswl发布了新的文献求助10
8秒前
哩哩发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
周敏杰完成签到,获得积分10
9秒前
9秒前
乐乐应助liaoyoujiao采纳,获得10
10秒前
王杰完成签到,获得积分10
10秒前
搜集达人应助哭泣的犀牛采纳,获得10
11秒前
wanci应助hhhhhhhh采纳,获得10
11秒前
李里哩发布了新的文献求助10
14秒前
火神杯完成签到,获得积分10
14秒前
大模型应助水母采纳,获得10
14秒前
FashionBoy应助江湖一郎中采纳,获得10
15秒前
传奇3应助夏侯幻梦采纳,获得10
16秒前
星辰大海应助哩哩采纳,获得10
16秒前
16秒前
17秒前
王喆完成签到,获得积分20
17秒前
Hello应助李里哩采纳,获得10
18秒前
Lynth_雪鸮发布了新的文献求助150
18秒前
18秒前
19秒前
19秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620797
求助须知:如何正确求助?哪些是违规求助? 4705375
关于积分的说明 14931806
捐赠科研通 4763300
什么是DOI,文献DOI怎么找? 2551231
邀请新用户注册赠送积分活动 1513783
关于科研通互助平台的介绍 1474672