已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Identification of two distinct clusters in membranous lupus nephritis patients: recognition of a high-risk profile based on unsupervised analysis

医学 狼疮性肾炎 鉴定(生物学) 计算生物学 模式识别(心理学) 人工智能 生物信息学 疾病 病理 计算机科学 植物 生物
作者
Zhipeng Wang,Xiang Wang,Yiqin Wang,Jianwen Yu,Xin Wang,Hongjian Ye,Haishan Wu,Ruihan Tang,Xi Xia,Wei Chen
出处
期刊:Nephrology Dialysis Transplantation [Oxford University Press]
标识
DOI:10.1093/ndt/gfae295
摘要

ABSTRACT Background and hypothesis Membranous lupus nephritis (MLN) traditionally includes class V (alone), and may be associated with other classes (III or IV). The clinical, therapeutic, and prognostic relevance of the classification remains controversial. Methods A retrospective cohort of 412 MLN patients from the First Affiliated Hospital of Sun-Yat Sen University was followed for a median of 65.68 (interquartile range 23.13–131.70) months. The primary outcomes were adverse renal events including all-cause death and ESRD. Phenotypes were identified and validated using unsupervised clustering analysis (K-means), principal component analysis and decision tree analysis. Results Distinct clinical and pathological differences were noted between the traditional class IV + V and classes V + III and V, while class V + III and class V exhibited high similarities in clinical features and prognosis (P = 0.074). K-means clustering revealed high-risk (n = 180) and low-risk (n = 232) groups, with significant differences in adverse renal outcomes (9.2% vs 4.1%, P < 0.001). To recognize the high-risk profile of MLN patients, a decision tree based on Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) score, hemoglobin, serum creatinine, traditional classification, and activity index of renal biopsy accurately clustered patients in the development (95.8% accuracy) and validation (87.1% accuracy) cohorts. Conclusions Two novel phenotypic clusters, more predictive than traditional classifications, enhance high-risk profile identification and prognostic accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简单梦秋完成签到,获得积分10
1秒前
毛哥看文献完成签到 ,获得积分10
2秒前
Ye关闭了Ye文献求助
2秒前
小小旭呀完成签到,获得积分10
4秒前
敏感蓝天完成签到,获得积分10
4秒前
5秒前
6秒前
斯文的慕儿完成签到 ,获得积分10
8秒前
背后的语海完成签到 ,获得积分10
8秒前
Akim应助Konodioda采纳,获得10
9秒前
君寻完成签到 ,获得积分10
9秒前
9秒前
逆天了呀完成签到,获得积分10
10秒前
眼睛大的初之完成签到 ,获得积分10
10秒前
hu发布了新的文献求助10
11秒前
11秒前
大个应助15608205856采纳,获得10
11秒前
陈陈陈发布了新的文献求助10
12秒前
丰富靖琪完成签到 ,获得积分10
12秒前
咕噜发布了新的文献求助10
13秒前
wangxiaobin完成签到 ,获得积分10
13秒前
14秒前
安详向薇完成签到,获得积分10
15秒前
15秒前
16秒前
稳重的白筠完成签到 ,获得积分10
18秒前
19秒前
成就大白菜真实的钥匙完成签到 ,获得积分10
19秒前
fang发布了新的文献求助10
19秒前
芋泥发布了新的文献求助10
20秒前
20秒前
jl发布了新的文献求助10
20秒前
wanci应助研友_宋文昊采纳,获得10
21秒前
彭于晏应助研友_宋文昊采纳,获得10
21秒前
multimodal完成签到 ,获得积分10
21秒前
cnspower应助研友_宋文昊采纳,获得30
21秒前
21秒前
23秒前
思源应助白茶泡泡球采纳,获得10
23秒前
希望天下0贩的0应助merry采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663892
求助须知:如何正确求助?哪些是违规求助? 4854151
关于积分的说明 15106245
捐赠科研通 4822200
什么是DOI,文献DOI怎么找? 2581283
邀请新用户注册赠送积分活动 1535500
关于科研通互助平台的介绍 1493747