DRExplainer: Quantifiable Interpretability in Drug Response Prediction with Directed Graph Convolutional Network

可解释性 计算机科学 图形 药品 药物反应 人工智能 机器学习 医学 药理学 理论计算机科学
作者
Haoyuan Shi,Tao Xu,Xiaodi Li,Qian Gao,Junfeng Xia,Zhenyu Yue
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2408.12139
摘要

Predicting the response of a cancer cell line to a therapeutic drug is pivotal for personalized medicine. Despite numerous deep learning methods that have been developed for drug response prediction, integrating diverse information about biological entities and predicting the directional response remain major challenges. Here, we propose a novel interpretable predictive model, DRExplainer, which leverages a directed graph convolutional network to enhance the prediction in a directed bipartite network framework. DRExplainer constructs a directed bipartite network integrating multi-omics profiles of cell lines, the chemical structure of drugs and known drug response to achieve directed prediction. Then, DRExplainer identifies the most relevant subgraph to each prediction in this directed bipartite network by learning a mask, facilitating critical medical decision-making. Additionally, we introduce a quantifiable method for model interpretability that leverages a ground truth benchmark dataset curated from biological features. In computational experiments, DRExplainer outperforms state-of-the-art predictive methods and another graph-based explanation method under the same experimental setting. Finally, the case studies further validate the interpretability and the effectiveness of DRExplainer in predictive novel drug response. Our code is available at: https://github.com/vshy-dream/DRExplainer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助秃顶双马尾采纳,获得10
刚刚
虾仁发布了新的文献求助10
刚刚
搜集达人应助姿姿采纳,获得30
1秒前
1秒前
2秒前
难过丹寒完成签到,获得积分20
2秒前
lucklywangli发布了新的文献求助10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
皇甫契发布了新的文献求助10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
Zhanghh87应助科研通管家采纳,获得10
3秒前
炸鸡大王发布了新的文献求助10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
jack应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
3秒前
jyy应助科研通管家采纳,获得10
3秒前
Wmin完成签到,获得积分10
3秒前
Owen应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
jack应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
MchemG应助科研通管家采纳,获得10
4秒前
jack应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
ni'jing发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
4秒前
所所应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
zyl完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954947
求助须知:如何正确求助?哪些是违规求助? 3501168
关于积分的说明 11102048
捐赠科研通 3231509
什么是DOI,文献DOI怎么找? 1786448
邀请新用户注册赠送积分活动 870058
科研通“疑难数据库(出版商)”最低求助积分说明 801798