已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

FastCTM (v1.0): Atmospheric chemical transport modelling with a principle-informed neural network for air quality simulations

CMAQ 空气质量指数 化学输运模型 污染物 气象学 环境科学 人工神经网络 均方误差 大气科学 统计 计算机科学 数学 化学 机器学习 地理 物理 有机化学
作者
Baolei Lyu,Ran Huang,Xinlu Wang,Weiguo Wang,Yongtao Hu
标识
DOI:10.5194/gmd-2024-198
摘要

Abstract. Chemical transport models (CTM) have wide and profound applications in air quality simulations and managements. However, its applications are often constrained by high computational burdens. In this study, we developed a neural network based CTM model (FastCTM) to efficiently simulate ten air pollutant composition variables, including major PM2.5 species of SO42-, NO3-, NH4+, organic matters and other inorganic components, coarse part of PM10, SO2, NO2, CO and O3. The FastCTM has a principle-informed structure by explicitly encoding atmospheric physical and chemical processes in a basic simulator. Specifically, in the simulator, five neural network modules are proposed to respectively represent five major atmospheric processes of primary emissions, transport, diffusion, chemical reactions and depositions. Given 1-hour initial condition data, the FastCTM is able to simulate future 24-hour concentrations of the ten air pollutants with corresponding meteorology fields and emissions as input. The FastCTM is trained with operational forecast data from a numerical CTM model named Community Multiscale Air Quality (CMAQ) in 2018–2022. The well-trained FastCTM is evaluated comparing to the long-term CMAQ forecast in an independent year 2023, and achieves high agreements with mean RMSE values of 9.1, 11.9, 4.4, 4.0, 48.9 and 10.9 μg/m3 and R2 values of 0.8, 0.81, 0.8, 0.83, 0.9 and 0.7 for PM2.5, PM10, SO2, NO2, CO, and O3. Besides, assessed against hourly site observations of six criteria pollutants, the RMSE values of FastCTM have small relative differences of 4.3 %, 4.2 %, -2.8 %, -1.7 %, -0.3 % and -3.2 % compared to that of CMAQ. The FastCTM model also exhibited reasonable responses of air quality to meteorological variables of air temperature, wind speed and planetary boundary layer height, as well as to input pollutant emissions. Furthermore, due to the principles-oriented structure, internal process analysis could be performed by FastCTM to quantify the specific contribution from each of the five processes for hourly air pollutant concentration changes. In a nutshell, FastCTM has multi-functional advantages in air pollutant concentration simulations, sensitivity analysis and internal process analysis with high computation efficiencies on GPU and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyy发布了新的文献求助10
刚刚
江愉应助落后的寻凝采纳,获得10
1秒前
小蘑菇应助Abx采纳,获得10
6秒前
7秒前
NexusExplorer应助jiabaoyu采纳,获得10
8秒前
李健应助deng20065采纳,获得10
9秒前
10秒前
11秒前
Huay完成签到 ,获得积分10
11秒前
12秒前
yangyang发布了新的文献求助10
13秒前
xuan发布了新的文献求助10
14秒前
14秒前
angie完成签到 ,获得积分10
15秒前
一只羚羊发布了新的文献求助10
15秒前
安的沛白发布了新的文献求助10
15秒前
15秒前
xxxxxxx发布了新的文献求助10
17秒前
陆陶缘完成签到 ,获得积分10
18秒前
SG完成签到 ,获得积分10
18秒前
jiabaoyu发布了新的文献求助10
19秒前
Abx发布了新的文献求助10
20秒前
默11发布了新的文献求助10
21秒前
学术虫虫完成签到,获得积分10
25秒前
爆米花应助安的沛白采纳,获得10
25秒前
angie关注了科研通微信公众号
26秒前
29秒前
科研通AI5应助光脚小妖采纳,获得10
31秒前
安的沛白完成签到,获得积分10
32秒前
YOGA1115发布了新的文献求助10
34秒前
无花果应助江江采纳,获得10
39秒前
wykion完成签到,获得积分0
41秒前
YOGA1115完成签到,获得积分20
41秒前
笗一一完成签到 ,获得积分10
42秒前
小二郎应助妃妃飞采纳,获得10
43秒前
王一博完成签到,获得积分10
44秒前
繁荣的青旋完成签到 ,获得积分10
46秒前
47秒前
48秒前
Owen应助xxxxxxx采纳,获得10
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 890
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3760808
求助须知:如何正确求助?哪些是违规求助? 3304664
关于积分的说明 10130597
捐赠科研通 3018529
什么是DOI,文献DOI怎么找? 1657714
邀请新用户注册赠送积分活动 791653
科研通“疑难数据库(出版商)”最低求助积分说明 754529