A Caching-based Framework for Scalable Temporal Graph Neural Network Training

计算机科学 可扩展性 隐藏物 加速 重新使用 理论计算机科学 图形 时间戳 推荐系统 分布式计算 机器学习 并行计算 计算机网络 数据库 生态学 生物
作者
Yiming Li,Yanyan Shen,Lei Chen,Mingxuan Yuan
出处
期刊:ACM Transactions on Database Systems [Association for Computing Machinery]
标识
DOI:10.1145/3705894
摘要

Representation learning over dynamic graphs is critical for many real-world applications such as social network services and recommender systems. Temporal graph neural networks (T-GNNs) are powerful representation learning methods and have demonstrated remarkable effectiveness on continuous-time dynamic graphs. However, T-GNNs still suffer from high time complexity, which increases linearly with the number of timestamps and grows exponentially with the model depth, making them not scalable to large dynamic graphs. To address the limitations, we propose Orca , a novel framework that accelerates T-GNN training by caching and reusing intermediate embeddings. We design an optimal caching policy, named MRD , for the uniform cache replacement problem, where embeddings at different intermediate layers have identical dimensions and recomputation costs. MRD not only improves the efficiency of training T-GNNs by maximizing the number of cache hits but also reduces the approximation errors by avoiding keeping and reusing extremely stale embeddings. For the general cache replacement problem, where embeddings at different intermediate layers can have different dimensions and recomputation costs, we solve this NP-hard problem by presenting a novel two-stage framework with approximation guarantees on the achieved benefit of caching. Furthermore, we have developed profound theoretical analyses of the approximation errors introduced by reusing intermediate embeddings, providing a thorough understanding of the impact of our caching and reuse schemes on model outputs. We also offer rigorous convergence guarantees for model training, adding to the reliability and validity of our Orca framework. Extensive experiments have validated that Orca can obtain two orders of magnitude speedup over state-of-the-art T-GNNs while achieving higher precision on various dynamic graphs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
传奇3应助Dorisyoolee采纳,获得10
2秒前
3秒前
gyx发布了新的文献求助10
5秒前
DUN发布了新的文献求助20
6秒前
酷波er应助zilhua采纳,获得10
6秒前
111发布了新的文献求助10
7秒前
9秒前
默默沛槐完成签到,获得积分10
10秒前
14秒前
一顿吃不饱完成签到,获得积分0
14秒前
科研通AI2S应助111采纳,获得10
16秒前
新明发布了新的文献求助30
19秒前
22秒前
烟花应助DUN采纳,获得10
23秒前
科研小迷糊完成签到,获得积分10
25秒前
26秒前
傲娇靖巧发布了新的文献求助10
29秒前
李爱国应助wpeng采纳,获得10
31秒前
Rita应助你好世界采纳,获得10
37秒前
yummybacon完成签到,获得积分10
37秒前
37秒前
新明发布了新的文献求助10
37秒前
39秒前
40秒前
废仙儿发布了新的文献求助10
45秒前
45秒前
46秒前
46秒前
47秒前
SciGPT应助傲娇靖巧采纳,获得10
50秒前
善学以致用应助梦蝴蝶采纳,获得10
52秒前
wpeng发布了新的文献求助10
52秒前
53秒前
科研通AI2S应助自信南霜采纳,获得10
53秒前
拼搏的亦丝完成签到 ,获得积分10
56秒前
982289172发布了新的文献求助10
58秒前
Owen应助lx采纳,获得10
1分钟前
chong0919完成签到,获得积分10
1分钟前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 2000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
The Three Stars Each: The Astrolabes and Related Texts 500
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
effects of intravenous lidocaine on postoperative pain and gastrointestinal function recovery following gastrointestinal surgery: a meta-analysis 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3379837
求助须知:如何正确求助?哪些是违规求助? 2995266
关于积分的说明 8762346
捐赠科研通 2680149
什么是DOI,文献DOI怎么找? 1467845
科研通“疑难数据库(出版商)”最低求助积分说明 678787
邀请新用户注册赠送积分活动 670646