Application of machine learning in acute upper gastrointestinal bleeding: bibliometric analysis

领域(数学) 引用 数据科学 文献计量学 质量(理念) 计算机科学 科学网 引文分析 医学 图书馆学 荟萃分析 病理 数学 认识论 哲学 纯数学
作者
Qun Li,G. Chen,Qiongjie Li,Dongna Guo
出处
期刊:Frontiers in Medicine [Frontiers Media SA]
卷期号:11
标识
DOI:10.3389/fmed.2024.1490757
摘要

Background In the past decade, the application of machine learning (ML) in the clinical management of acute upper gastrointestinal bleeding (AUGIB) has received much attention and has become a hot research topic. However, no scientometric report has systematically summarized and outlined the research progress in this field. Objective This study aims to utilize bibliometric analysis methods to delve into the applications of machine learning in AUGIB and the collaborative network behind it over the past decade. Through a thorough analysis of relevant literature, we uncover the research trends and collaboration patterns in this field, which can provide valuable references and insights for further in-depth exploration in the same field. Methods Using the Web of Science (WOS) as the data source, this study explores academic development in a specific field from December 2013 to December 2023. The search strategy included terms related to “Machine Learning” and “Acute Upper Gastrointestinal Bleeding”. Only original articles in English focusing on ML in AUGIB were included. The analysis of downloaded literature with Citespace software, including keyword co-occurrence, author collaboration networks, and citation relationship networks, reveals academic dynamics, research hotspots, and collaboration trends. Results After sorting and compiling, we have collected 73 academic papers written by 217 authors from 133 institutions in 29 countries worldwide. Among them, China and AM J GASTROENTEROL have made significant contributions in this field, providing many high-quality research achievements. The study found that these papers mainly focus on three core research hotspots: deepening clinical consensus, precise analysis of medical images, and optimization of data integration and decision support systems. Conclusions This study summarizes the latest advancements in the application of machine learning to AUGIB research. Through bibliometric analysis and network visualization, it reveals emerging trends, origins, leading institutions, and hot topics in this field. While this area has already demonstrated significant potential in medical artificial intelligence, our findings will provide valuable insights for future research directions and clinical practices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助大胆冰岚采纳,获得10
1秒前
1秒前
1秒前
linger2发布了新的文献求助10
1秒前
Chaos_Law完成签到 ,获得积分10
2秒前
3秒前
meeteryu完成签到,获得积分10
4秒前
5秒前
6秒前
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
大个应助科研通管家采纳,获得10
6秒前
顾矜应助科研通管家采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
tuanheqi应助科研通管家采纳,获得150
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
7秒前
哭泣凌瑶发布了新的文献求助10
8秒前
Dr_JennyZ完成签到,获得积分10
8秒前
9秒前
SKT_hati发布了新的文献求助10
9秒前
9秒前
转转龙完成签到 ,获得积分10
9秒前
十六日呀发布了新的文献求助10
10秒前
Feng发布了新的文献求助10
10秒前
tguczf发布了新的文献求助10
10秒前
11秒前
11发布了新的文献求助10
12秒前
微笑白萱发布了新的文献求助10
13秒前
蔡晓华发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287984
求助须知:如何正确求助?哪些是违规求助? 4440026
关于积分的说明 13823687
捐赠科研通 4322271
什么是DOI,文献DOI怎么找? 2372462
邀请新用户注册赠送积分活动 1367928
关于科研通互助平台的介绍 1331548