Application of machine learning in acute upper gastrointestinal bleeding: bibliometric analysis

领域(数学) 引用 数据科学 文献计量学 质量(理念) 计算机科学 科学网 引文分析 医学 图书馆学 荟萃分析 病理 哲学 数学 认识论 纯数学
作者
Qun Li,G. Chen,Qiongjie Li,Dongna Guo
出处
期刊:Frontiers in Medicine [Frontiers Media SA]
卷期号:11
标识
DOI:10.3389/fmed.2024.1490757
摘要

Background In the past decade, the application of machine learning (ML) in the clinical management of acute upper gastrointestinal bleeding (AUGIB) has received much attention and has become a hot research topic. However, no scientometric report has systematically summarized and outlined the research progress in this field. Objective This study aims to utilize bibliometric analysis methods to delve into the applications of machine learning in AUGIB and the collaborative network behind it over the past decade. Through a thorough analysis of relevant literature, we uncover the research trends and collaboration patterns in this field, which can provide valuable references and insights for further in-depth exploration in the same field. Methods Using the Web of Science (WOS) as the data source, this study explores academic development in a specific field from December 2013 to December 2023. The search strategy included terms related to “Machine Learning” and “Acute Upper Gastrointestinal Bleeding”. Only original articles in English focusing on ML in AUGIB were included. The analysis of downloaded literature with Citespace software, including keyword co-occurrence, author collaboration networks, and citation relationship networks, reveals academic dynamics, research hotspots, and collaboration trends. Results After sorting and compiling, we have collected 73 academic papers written by 217 authors from 133 institutions in 29 countries worldwide. Among them, China and AM J GASTROENTEROL have made significant contributions in this field, providing many high-quality research achievements. The study found that these papers mainly focus on three core research hotspots: deepening clinical consensus, precise analysis of medical images, and optimization of data integration and decision support systems. Conclusions This study summarizes the latest advancements in the application of machine learning to AUGIB research. Through bibliometric analysis and network visualization, it reveals emerging trends, origins, leading institutions, and hot topics in this field. While this area has already demonstrated significant potential in medical artificial intelligence, our findings will provide valuable insights for future research directions and clinical practices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助dumplong采纳,获得10
刚刚
www发布了新的文献求助10
1秒前
小羊耶啵发布了新的文献求助20
1秒前
王jh完成签到 ,获得积分10
1秒前
香蕉觅云应助马成双采纳,获得10
1秒前
陈先生de猫完成签到,获得积分20
1秒前
sc完成签到,获得积分10
1秒前
顾矜应助搔扒采纳,获得10
1秒前
3093284979完成签到,获得积分10
1秒前
完美世界应助H星科23456采纳,获得10
1秒前
2秒前
2秒前
SciGPT应助gaochanglu采纳,获得10
4秒前
4秒前
4秒前
5秒前
kljlk发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
小铭同学关注了科研通微信公众号
6秒前
谢瑞恒完成签到,获得积分10
6秒前
6秒前
淇奥完成签到 ,获得积分10
6秒前
天天快乐应助Fuao采纳,获得10
6秒前
dz618完成签到,获得积分10
7秒前
7秒前
7秒前
852应助葡萄冻冻采纳,获得10
7秒前
Ww发布了新的文献求助10
8秒前
小李呀发布了新的文献求助10
8秒前
9秒前
wangqinlei发布了新的文献求助10
9秒前
9秒前
10秒前
欢呼的冷亦完成签到,获得积分10
10秒前
10秒前
不明生物发布了新的文献求助10
10秒前
dxxcshin完成签到,获得积分10
11秒前
852应助清腾采纳,获得10
11秒前
11秒前
优雅的砖头完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624821
求助须知:如何正确求助?哪些是违规求助? 4710692
关于积分的说明 14951877
捐赠科研通 4778750
什么是DOI,文献DOI怎么找? 2553437
邀请新用户注册赠送积分活动 1515386
关于科研通互助平台的介绍 1475721