Application of machine learning in acute upper gastrointestinal bleeding: bibliometric analysis

领域(数学) 引用 数据科学 文献计量学 质量(理念) 计算机科学 科学网 引文分析 医学 图书馆学 荟萃分析 病理 哲学 数学 认识论 纯数学
作者
Qun Li,G. Chen,Qiongjie Li,Dongna Guo
出处
期刊:Frontiers in Medicine [Frontiers Media]
卷期号:11
标识
DOI:10.3389/fmed.2024.1490757
摘要

Background In the past decade, the application of machine learning (ML) in the clinical management of acute upper gastrointestinal bleeding (AUGIB) has received much attention and has become a hot research topic. However, no scientometric report has systematically summarized and outlined the research progress in this field. Objective This study aims to utilize bibliometric analysis methods to delve into the applications of machine learning in AUGIB and the collaborative network behind it over the past decade. Through a thorough analysis of relevant literature, we uncover the research trends and collaboration patterns in this field, which can provide valuable references and insights for further in-depth exploration in the same field. Methods Using the Web of Science (WOS) as the data source, this study explores academic development in a specific field from December 2013 to December 2023. The search strategy included terms related to “Machine Learning” and “Acute Upper Gastrointestinal Bleeding”. Only original articles in English focusing on ML in AUGIB were included. The analysis of downloaded literature with Citespace software, including keyword co-occurrence, author collaboration networks, and citation relationship networks, reveals academic dynamics, research hotspots, and collaboration trends. Results After sorting and compiling, we have collected 73 academic papers written by 217 authors from 133 institutions in 29 countries worldwide. Among them, China and AM J GASTROENTEROL have made significant contributions in this field, providing many high-quality research achievements. The study found that these papers mainly focus on three core research hotspots: deepening clinical consensus, precise analysis of medical images, and optimization of data integration and decision support systems. Conclusions This study summarizes the latest advancements in the application of machine learning to AUGIB research. Through bibliometric analysis and network visualization, it reveals emerging trends, origins, leading institutions, and hot topics in this field. While this area has already demonstrated significant potential in medical artificial intelligence, our findings will provide valuable insights for future research directions and clinical practices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yKkkkkk发布了新的文献求助10
1秒前
思源应助ddddd采纳,获得10
2秒前
2秒前
2秒前
Owen应助舒心梦琪采纳,获得10
2秒前
壮观的夏云完成签到,获得积分10
3秒前
淡淡的秋柳完成签到,获得积分10
3秒前
3秒前
3秒前
MM发布了新的文献求助10
3秒前
clamon完成签到,获得积分10
3秒前
婉晴发布了新的文献求助10
4秒前
wjx发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
Erik发布了新的文献求助10
6秒前
6秒前
7秒前
luermei发布了新的文献求助10
7秒前
ww完成签到,获得积分10
7秒前
stefan发布了新的文献求助10
7秒前
zzyytt完成签到,获得积分10
7秒前
8秒前
机灵笑萍发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
jin晨发布了新的文献求助10
10秒前
及川星月完成签到,获得积分10
10秒前
苏灿应助mrx采纳,获得20
11秒前
sciN发布了新的文献求助10
11秒前
Orange应助忍冬采纳,获得10
11秒前
zzyytt发布了新的文献求助20
12秒前
吴晨曦发布了新的文献求助20
12秒前
12秒前
文艺点点完成签到,获得积分10
12秒前
12秒前
樱悼柳雪发布了新的文献求助10
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974844
求助须知:如何正确求助?哪些是违规求助? 3519270
关于积分的说明 11197844
捐赠科研通 3255496
什么是DOI,文献DOI怎么找? 1797791
邀请新用户注册赠送积分活动 877187
科研通“疑难数据库(出版商)”最低求助积分说明 806202