Combining climate models and observations to predict the time remaining until regional warming thresholds are reached

环境科学 气候学 气候变化 全球变暖 气候模式 热身 气象学 大气科学 地理 地质学 医学 海洋学 物理疗法
作者
Elizabeth A. Barnes,Noah S. Diffenbaugh,Sonia I. Seneviratne
出处
期刊:Environmental Research Letters [IOP Publishing]
卷期号:20 (1): 014008-014008
标识
DOI:10.1088/1748-9326/ad91ca
摘要

Abstract The importance of climate change for driving adverse climate impacts has motivated substantial effort to understand the rate and magnitude of regional climate change in different parts of the world. However, despite decades of research, there is substantial uncertainty in the time remaining until specific regional temperature thresholds are reached, with climate models often disagreeing both on the warming that has occurred to-date, as well as the warming that might be experienced in the next few decades. Here, we adapt a recent machine learning approach to train a convolutional neural network to predict the time (and its uncertainty) until different regional warming thresholds are reached based on the current state of the climate system. In addition to predicting regional rather than global warming thresholds, we include a transfer learning step in which the climate-model-trained network is fine-tuned with limited observations, which further improves predictions of the real world. Using observed 2023 temperature anomalies to define the current climate state, our method yields a central estimate of 2040 or earlier for reaching the 1.5 °C threshold for all regions where transfer learning is possible, and a central estimate of 2040 or earlier for reaching the 2.0 °C threshold for 31 out of 34 regions. For 3.0 °C, 26 °C out of 34 regions are predicted to reach the threshold by 2060. Our results highlight the power of transfer learning as a tool to combine a suite of climate model projections with observations to produce constrained predictions of future temperatures based on the current climate.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
张洪珊完成签到,获得积分10
2秒前
2秒前
3秒前
FashionBoy应助cc采纳,获得10
3秒前
6秒前
7秒前
酷酷嵩发布了新的文献求助30
7秒前
icecream发布了新的文献求助10
8秒前
8秒前
柠小檬c完成签到,获得积分10
8秒前
史迪仔完成签到,获得积分10
9秒前
可可西里完成签到,获得积分10
9秒前
9秒前
哦哦发布了新的文献求助10
11秒前
13秒前
13秒前
科研顺利发布了新的文献求助10
14秒前
14秒前
15秒前
17秒前
17秒前
李健的小迷弟应助潇笑采纳,获得10
17秒前
取个名儿吧完成签到,获得积分10
19秒前
斯文远望应助lhr采纳,获得10
19秒前
翼静应助一瓶罐采纳,获得10
20秒前
白白拜拜完成签到,获得积分10
20秒前
20秒前
21秒前
梁家小卖部完成签到,获得积分10
22秒前
Jasper应助llllllm采纳,获得10
23秒前
Sara发布了新的文献求助10
23秒前
翼静应助Niuma采纳,获得10
23秒前
一池楼台发布了新的文献求助10
23秒前
XMUh发布了新的文献求助10
25秒前
25秒前
25秒前
26秒前
27秒前
28秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206929
求助须知:如何正确求助?哪些是违规求助? 2856304
关于积分的说明 8103836
捐赠科研通 2521393
什么是DOI,文献DOI怎么找? 1354579
科研通“疑难数据库(出版商)”最低求助积分说明 642050
邀请新用户注册赠送积分活动 613277