Combining climate models and observations to predict the time remaining until regional warming thresholds are reached

环境科学 气候学 气候变化 全球变暖 气候模式 热身 气象学 大气科学 地理 地质学 物理疗法 医学 海洋学
作者
Elizabeth A. Barnes,Noah S. Diffenbaugh,Sonia I. Seneviratne
出处
期刊:Environmental Research Letters [IOP Publishing]
卷期号:20 (1): 014008-014008
标识
DOI:10.1088/1748-9326/ad91ca
摘要

Abstract The importance of climate change for driving adverse climate impacts has motivated substantial effort to understand the rate and magnitude of regional climate change in different parts of the world. However, despite decades of research, there is substantial uncertainty in the time remaining until specific regional temperature thresholds are reached, with climate models often disagreeing both on the warming that has occurred to-date, as well as the warming that might be experienced in the next few decades. Here, we adapt a recent machine learning approach to train a convolutional neural network to predict the time (and its uncertainty) until different regional warming thresholds are reached based on the current state of the climate system. In addition to predicting regional rather than global warming thresholds, we include a transfer learning step in which the climate-model-trained network is fine-tuned with limited observations, which further improves predictions of the real world. Using observed 2023 temperature anomalies to define the current climate state, our method yields a central estimate of 2040 or earlier for reaching the 1.5 °C threshold for all regions where transfer learning is possible, and a central estimate of 2040 or earlier for reaching the 2.0 °C threshold for 31 out of 34 regions. For 3.0 °C, 26 °C out of 34 regions are predicted to reach the threshold by 2060. Our results highlight the power of transfer learning as a tool to combine a suite of climate model projections with observations to produce constrained predictions of future temperatures based on the current climate.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xmy完成签到,获得积分10
1秒前
cata完成签到,获得积分10
1秒前
2秒前
LILI2完成签到 ,获得积分10
2秒前
高贵觅山完成签到,获得积分10
2秒前
黄橙子完成签到 ,获得积分10
2秒前
RR完成签到 ,获得积分10
3秒前
5秒前
领导范儿应助xmy采纳,获得10
5秒前
雨寒完成签到 ,获得积分10
5秒前
蕉鲁诺蕉巴纳完成签到,获得积分0
5秒前
维尼发布了新的文献求助10
5秒前
chiazy完成签到,获得积分10
6秒前
都要多喝水完成签到,获得积分10
6秒前
叶y发布了新的文献求助10
6秒前
彩色完成签到,获得积分10
6秒前
gaozengxiang完成签到,获得积分10
8秒前
隔水一路秋完成签到,获得积分10
8秒前
9秒前
Ych发布了新的文献求助30
10秒前
栗子完成签到,获得积分10
10秒前
浮游应助科研通管家采纳,获得10
11秒前
11秒前
xiaowang完成签到,获得积分10
12秒前
辞却发布了新的文献求助10
14秒前
14秒前
林霖完成签到 ,获得积分10
14秒前
xiaoxie完成签到 ,获得积分10
15秒前
NiNi完成签到 ,获得积分10
15秒前
Alex完成签到,获得积分10
15秒前
Wind应助维尼采纳,获得20
16秒前
罗先斗发布了新的文献求助10
17秒前
xiaowang发布了新的文献求助20
19秒前
duonicola完成签到,获得积分10
19秒前
醋酸柠檬完成签到,获得积分10
19秒前
丽丽完成签到,获得积分10
20秒前
老白完成签到,获得积分10
20秒前
Ych完成签到,获得积分20
22秒前
TORCH完成签到 ,获得积分10
22秒前
夏虫完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5325660
求助须知:如何正确求助?哪些是违规求助? 4466066
关于积分的说明 13895295
捐赠科研通 4358363
什么是DOI,文献DOI怎么找? 2394066
邀请新用户注册赠送积分活动 1387465
关于科研通互助平台的介绍 1358348