Combining climate models and observations to predict the time remaining until regional warming thresholds are reached

环境科学 气候学 气候变化 全球变暖 气候模式 热身 气象学 大气科学 地理 地质学 医学 海洋学 物理疗法
作者
Elizabeth A. Barnes,Noah S. Diffenbaugh,Sonia I. Seneviratne
出处
期刊:Environmental Research Letters [IOP Publishing]
卷期号:20 (1): 014008-014008
标识
DOI:10.1088/1748-9326/ad91ca
摘要

Abstract The importance of climate change for driving adverse climate impacts has motivated substantial effort to understand the rate and magnitude of regional climate change in different parts of the world. However, despite decades of research, there is substantial uncertainty in the time remaining until specific regional temperature thresholds are reached, with climate models often disagreeing both on the warming that has occurred to-date, as well as the warming that might be experienced in the next few decades. Here, we adapt a recent machine learning approach to train a convolutional neural network to predict the time (and its uncertainty) until different regional warming thresholds are reached based on the current state of the climate system. In addition to predicting regional rather than global warming thresholds, we include a transfer learning step in which the climate-model-trained network is fine-tuned with limited observations, which further improves predictions of the real world. Using observed 2023 temperature anomalies to define the current climate state, our method yields a central estimate of 2040 or earlier for reaching the 1.5 °C threshold for all regions where transfer learning is possible, and a central estimate of 2040 or earlier for reaching the 2.0 °C threshold for 31 out of 34 regions. For 3.0 °C, 26 °C out of 34 regions are predicted to reach the threshold by 2060. Our results highlight the power of transfer learning as a tool to combine a suite of climate model projections with observations to produce constrained predictions of future temperatures based on the current climate.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玛卡巴卡完成签到,获得积分10
3秒前
就是躺完成签到 ,获得积分10
5秒前
7秒前
金桔希子完成签到,获得积分10
8秒前
taoxz521完成签到 ,获得积分10
8秒前
高级后勤完成签到,获得积分10
8秒前
Amon完成签到 ,获得积分10
9秒前
Liziqi823完成签到,获得积分10
9秒前
Silence完成签到,获得积分0
11秒前
无味完成签到,获得积分10
11秒前
香蕉觅云应助akihi采纳,获得10
11秒前
开心祯祯完成签到,获得积分10
11秒前
Deerlu完成签到,获得积分10
12秒前
秦时明月完成签到,获得积分10
15秒前
LXx完成签到 ,获得积分10
15秒前
深情千雁完成签到,获得积分10
16秒前
巴山郎完成签到,获得积分10
16秒前
guo完成签到 ,获得积分10
16秒前
大模型应助洁净斑马采纳,获得10
18秒前
dorothy_meng完成签到,获得积分10
18秒前
所所应助拼搏的小鱼采纳,获得10
20秒前
略略略完成签到 ,获得积分10
21秒前
22秒前
虚幻元风完成签到 ,获得积分10
22秒前
哦吼完成签到,获得积分20
22秒前
研友_LkD29n完成签到 ,获得积分10
22秒前
无语的断缘完成签到,获得积分10
23秒前
森森完成签到,获得积分10
24秒前
24秒前
哦吼发布了新的文献求助10
26秒前
旺仔完成签到,获得积分10
26秒前
Brian完成签到,获得积分10
27秒前
28秒前
斯文败类应助huyz采纳,获得10
28秒前
29秒前
笨笨凡松完成签到 ,获得积分10
29秒前
既然寄了,那就开摆完成签到 ,获得积分10
30秒前
高大绝义完成签到,获得积分10
30秒前
洁净斑马发布了新的文献求助10
30秒前
量子星尘发布了新的文献求助10
32秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015737
求助须知:如何正确求助?哪些是违规求助? 3555681
关于积分的说明 11318391
捐赠科研通 3288879
什么是DOI,文献DOI怎么找? 1812301
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027