亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Combining climate models and observations to predict the time remaining until regional warming thresholds are reached

环境科学 气候学 气候变化 全球变暖 气候模式 热身 气象学 大气科学 地理 地质学 物理疗法 医学 海洋学
作者
Elizabeth A. Barnes,Noah S. Diffenbaugh,Sonia I. Seneviratne
出处
期刊:Environmental Research Letters [IOP Publishing]
卷期号:20 (1): 014008-014008
标识
DOI:10.1088/1748-9326/ad91ca
摘要

Abstract The importance of climate change for driving adverse climate impacts has motivated substantial effort to understand the rate and magnitude of regional climate change in different parts of the world. However, despite decades of research, there is substantial uncertainty in the time remaining until specific regional temperature thresholds are reached, with climate models often disagreeing both on the warming that has occurred to-date, as well as the warming that might be experienced in the next few decades. Here, we adapt a recent machine learning approach to train a convolutional neural network to predict the time (and its uncertainty) until different regional warming thresholds are reached based on the current state of the climate system. In addition to predicting regional rather than global warming thresholds, we include a transfer learning step in which the climate-model-trained network is fine-tuned with limited observations, which further improves predictions of the real world. Using observed 2023 temperature anomalies to define the current climate state, our method yields a central estimate of 2040 or earlier for reaching the 1.5 °C threshold for all regions where transfer learning is possible, and a central estimate of 2040 or earlier for reaching the 2.0 °C threshold for 31 out of 34 regions. For 3.0 °C, 26 °C out of 34 regions are predicted to reach the threshold by 2060. Our results highlight the power of transfer learning as a tool to combine a suite of climate model projections with observations to produce constrained predictions of future temperatures based on the current climate.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助小江采纳,获得10
42秒前
受伤纲完成签到 ,获得积分10
46秒前
46秒前
flyinthesky完成签到,获得积分10
47秒前
花花公子完成签到,获得积分10
53秒前
深情安青应助Cmqq采纳,获得10
1分钟前
1分钟前
张晓祁完成签到,获得积分10
1分钟前
小江发布了新的文献求助10
1分钟前
yueying完成签到,获得积分10
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
鲤鱼笑南完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
Mia发布了新的文献求助10
2分钟前
2分钟前
2分钟前
Cmqq发布了新的文献求助10
2分钟前
SciGPT应助Mia采纳,获得10
2分钟前
2分钟前
丽君发布了新的文献求助10
2分钟前
sidashu完成签到,获得积分10
2分钟前
田様应助Cmqq采纳,获得10
2分钟前
乌乌完成签到,获得积分10
2分钟前
萌仔完成签到,获得积分10
2分钟前
萌仔发布了新的文献求助10
2分钟前
Mei完成签到,获得积分10
3分钟前
3分钟前
小金完成签到,获得积分20
3分钟前
稳重的小刺猬完成签到,获得积分10
3分钟前
3分钟前
林林发布了新的文献求助10
3分钟前
桐桐应助科研通管家采纳,获得10
3分钟前
小蘑菇应助科研通管家采纳,获得10
3分钟前
BowieHuang应助科研通管家采纳,获得20
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599776
求助须知:如何正确求助?哪些是违规求助? 4685512
关于积分的说明 14838542
捐赠科研通 4670527
什么是DOI,文献DOI怎么找? 2538202
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470904