已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

NIMG-82. DEVELOPMENT AND VALIDATION OF AN MRI-BASED DEEP LEARNING MODEL TO DIFFERENTIATEIDH-WILDTYPE GLIOBLASTOMA AND TUMEFACTIVE MULTIPLE SCLEROSIS

胶质母细胞瘤 多发性硬化 医学 癌症研究 免疫学
作者
Gian Marco Conte,Mana Moassefi,Paul A. Decker,Matthew Kosel,Christina B. McCarthy,Mah Fereidan,Yalda Nikanpour,Heather K. Pump,Robert B. Jenkins,Daniel H. Lachance,Bradley J. Erickson,W. Oliver Tobin,Jeanette E. Eckel‐Passow
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:26 (Supplement_8): viii214-viii214
标识
DOI:10.1093/neuonc/noae165.0846
摘要

Abstract Clinical management of IDH wildtype glioblastoma (GBM) and tumefactive multiple sclerosis (tMS) is drastically different. GBM requires maximal safe resection followed by chemoradiation, while tMS outcome is worsened by surgery and radiotherapy. Noninvasive methods are needed to help with accurate diagnosis of tumor and non-tumor etiologies. To develop an MRI-based classification model, tMS subjects diagnosed prior to January 1, 2020, were matched to tMS by age at diagnosis, sex, index MRI date, and 2D/3D acquisition. Inclusion criteria included one cm minimal lesion size and pre-operative post-contrast T1 and T2 images available for analysis. A 3D-DenseNet121 was used to develop a classification model using prespecified parameters: 650 epochs, batch size 16, learning rate 10-3, cross-entropy loss, and AdamW optimizer. The stopping rule was defined as three sequential differences in epoch cross-entropy loss <0.02. Models were developed using both T1gd and T2, as well as from only T1gd and only T2. Training included 220 subjects (110 GBM, 110 tMS). A 2-stage validation design was used, which included both retrospective and prospective cohorts. Stage 1 consisted of 272 retrospective GBM (diagnosed prior to January 1, 2020). Stage 2 consisted of 69 and 34 prospective (diagnosed after January 1, 2020) GBM and tMS, respectively. External validation on the 272 retrospective GBM demonstrated accuracy of 91%, 84%, and 78% for T1gd+T2, T1gd only, and T2 only, respectively. External validation on the 69 prospective GBM demonstrated an accuracy of 87%, 64%, and 67% for T1gd+T2, T1gd only, and T2 only, respectively. The 34 prospective tMS demonstrated accuracy of 76%, 76%, and 82% for T1gd+T2, T1gd only, and T2 only, respectively. This shows the feasibility of deep learning to aid in differential diagnosis of brain lesions. Future work entails the integration of germline variants into the classification model, including variants associated with the risk of glioma or MS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
捏个小雪团完成签到 ,获得积分10
刚刚
小坚果完成签到,获得积分10
1秒前
wangjue发布了新的文献求助10
2秒前
123发布了新的文献求助10
2秒前
和谐的清发布了新的文献求助10
3秒前
哈哈哈完成签到 ,获得积分10
3秒前
白羽丫完成签到,获得积分10
4秒前
努力学习完成签到,获得积分10
6秒前
6秒前
怡然剑成完成签到 ,获得积分10
7秒前
如星完成签到 ,获得积分10
7秒前
ZTLlele完成签到 ,获得积分10
9秒前
10秒前
啦啦啦啦完成签到,获得积分10
12秒前
欣妍完成签到,获得积分10
14秒前
榆木风完成签到 ,获得积分10
14秒前
haha完成签到 ,获得积分10
17秒前
18秒前
勤恳的语蝶完成签到 ,获得积分10
19秒前
CipherSage应助zhaoruiqi采纳,获得10
22秒前
22秒前
HaoyangDu发布了新的文献求助10
25秒前
shentaii完成签到,获得积分10
30秒前
31秒前
勤恳问薇完成签到 ,获得积分10
33秒前
Neuronicus完成签到,获得积分10
34秒前
完美世界应助小胖子采纳,获得10
35秒前
生物云完成签到,获得积分10
35秒前
浮游应助科研通管家采纳,获得10
35秒前
大个应助科研通管家采纳,获得10
35秒前
ccm应助科研通管家采纳,获得10
35秒前
无解klein瓶完成签到,获得积分10
35秒前
浮游应助科研通管家采纳,获得10
35秒前
浮游应助科研通管家采纳,获得10
35秒前
今后应助HaoyangDu采纳,获得10
35秒前
烟花应助科研通管家采纳,获得10
35秒前
GingerF应助科研通管家采纳,获得10
35秒前
liao应助科研通管家采纳,获得10
35秒前
GingerF应助科研通管家采纳,获得50
35秒前
浮游应助科研通管家采纳,获得10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458670
求助须知:如何正确求助?哪些是违规求助? 4564690
关于积分的说明 14296542
捐赠科研通 4489739
什么是DOI,文献DOI怎么找? 2459274
邀请新用户注册赠送积分活动 1448998
关于科研通互助平台的介绍 1424502