Prediction of bone mineral density based on computer tomography images using deep learning model

定量计算机断层扫描 骨质疏松症 骨矿物 医学 断层摄影术 骨密度 人口 分类 放射科 人工智能 计算机科学 内科学 环境卫生
作者
Jujia Li,Ping Zhang,Jingxu Xu,Ranxu Zhang,Congcong Ren,Fan Yang,Qian Li,Yanhong Dong,Jian Zhao,Chencui Huang
出处
期刊:Gerontology [Karger Publishers]
卷期号:: 1-16
标识
DOI:10.1159/000542396
摘要

Introduction The problem of population aging is intensifying worldwide. Osteoporosis has become an important cause affecting the health status of older populations. However, the diagnosis of osteoporosis and people's understanding of it are seriously insufficient. We aim to develop a deep learning model to automatically measure bone mineral density (BMD) and improve the diagnostic rate of osteoporosis. Methods The images of 801 subjects with 2080 vertebral bodies who underwent abdominal paired computer tomography (CT) and quantitative computer tomography (QCT) scanning was retrived from June 2020 to January 2022. The BMD of T11-L4 vertebral bodies was measured by QCT. Developing a multi-stage deep learning-based model to simulate the segmentation of the vertebral body and predict BMD. The subjects were randomly divided into training dataset, validation dataset and test dataset. Analyze the fitting effect between the BMD measured by the model and the standard BMD by QCT. Accuracy, precision, recall and f1- score were used to analyze the diagnostic performance according to categorization criterion measured by QCT. Results 410 males (51.2%) and 391 females (48.8%) were included in this study. Among them, there were 154 (19.2%) males and 118 (14.7%) females aged 23-44; 182 (22.7%) males and 205 (25.6%) females aged 45-64; 74 (9.2%) males and 68 (8.5%) females aged 65-84. The number of vertebral bodies in the training dataset, the validation dataset, and the test dataset was 1433, 243, 404, respectively. In each dataset, the BMD of males and females decreases with age. There was a significant correlation between the BMD measured by the model and QCT, with the coefficient of determination (r2) 0.95-0.97. The diagnostic accuracy based on the model in the three datasets was 0.88, 0.91, and 0.91, respectively. Conclusion The proposed multi-stage deep learning-based model can achieve automatic measurement of vertebral BMD and performed well in the prediction of osteoporosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胖豆儿发布了新的文献求助10
刚刚
FanFan完成签到,获得积分10
1秒前
3秒前
5秒前
所所应助琪琪采纳,获得10
5秒前
6秒前
8秒前
11完成签到,获得积分10
8秒前
8秒前
拉拉发布了新的文献求助10
10秒前
10秒前
冉徐凤发布了新的文献求助10
11秒前
忙碌的数学人完成签到,获得积分10
12秒前
Liu完成签到,获得积分10
13秒前
加减乘除发布了新的文献求助10
13秒前
13秒前
Hello应助roclie采纳,获得10
14秒前
15秒前
锤子发布了新的文献求助10
15秒前
自由莺完成签到 ,获得积分10
15秒前
正直无极完成签到,获得积分10
16秒前
ym完成签到 ,获得积分10
16秒前
laura发布了新的文献求助10
16秒前
李健应助屹男采纳,获得10
19秒前
19秒前
20秒前
Jasper应助科研通管家采纳,获得10
20秒前
Dada应助科研通管家采纳,获得10
20秒前
今后应助科研通管家采纳,获得30
20秒前
传奇3应助科研通管家采纳,获得10
20秒前
20秒前
桐桐应助科研通管家采纳,获得10
20秒前
拉拉完成签到,获得积分20
20秒前
CCL应助科研通管家采纳,获得40
20秒前
棋士应助科研通管家采纳,获得10
20秒前
CipherSage应助科研通管家采纳,获得10
20秒前
CipherSage应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
liaodongjun应助科研通管家采纳,获得10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954521
求助须知:如何正确求助?哪些是违规求助? 3500524
关于积分的说明 11099808
捐赠科研通 3230997
什么是DOI,文献DOI怎么找? 1786258
邀请新用户注册赠送积分活动 869904
科研通“疑难数据库(出版商)”最低求助积分说明 801717