亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of bone mineral density based on computer tomography images using deep learning model

定量计算机断层扫描 骨质疏松症 骨矿物 医学 断层摄影术 骨密度 人口 分类 放射科 人工智能 计算机科学 内科学 环境卫生
作者
Jujia Li,Ping Zhang,Jingxu Xu,Ranxu Zhang,Congcong Ren,Fan Yang,Qian Li,Yanhong Dong,Jian Zhao,Chencui Huang
出处
期刊:Gerontology [S. Karger AG]
卷期号:: 1-16 被引量:1
标识
DOI:10.1159/000542396
摘要

Introduction The problem of population aging is intensifying worldwide. Osteoporosis has become an important cause affecting the health status of older populations. However, the diagnosis of osteoporosis and people's understanding of it are seriously insufficient. We aim to develop a deep learning model to automatically measure bone mineral density (BMD) and improve the diagnostic rate of osteoporosis. Methods The images of 801 subjects with 2080 vertebral bodies who underwent abdominal paired computer tomography (CT) and quantitative computer tomography (QCT) scanning was retrived from June 2020 to January 2022. The BMD of T11-L4 vertebral bodies was measured by QCT. Developing a multi-stage deep learning-based model to simulate the segmentation of the vertebral body and predict BMD. The subjects were randomly divided into training dataset, validation dataset and test dataset. Analyze the fitting effect between the BMD measured by the model and the standard BMD by QCT. Accuracy, precision, recall and f1- score were used to analyze the diagnostic performance according to categorization criterion measured by QCT. Results 410 males (51.2%) and 391 females (48.8%) were included in this study. Among them, there were 154 (19.2%) males and 118 (14.7%) females aged 23-44; 182 (22.7%) males and 205 (25.6%) females aged 45-64; 74 (9.2%) males and 68 (8.5%) females aged 65-84. The number of vertebral bodies in the training dataset, the validation dataset, and the test dataset was 1433, 243, 404, respectively. In each dataset, the BMD of males and females decreases with age. There was a significant correlation between the BMD measured by the model and QCT, with the coefficient of determination (r2) 0.95-0.97. The diagnostic accuracy based on the model in the three datasets was 0.88, 0.91, and 0.91, respectively. Conclusion The proposed multi-stage deep learning-based model can achieve automatic measurement of vertebral BMD and performed well in the prediction of osteoporosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
Able完成签到,获得积分10
50秒前
jqliu发布了新的文献求助30
54秒前
廷烨完成签到 ,获得积分10
1分钟前
雪狐417完成签到 ,获得积分10
2分钟前
爆米花应助tomorrow采纳,获得10
2分钟前
可靠的平彤完成签到,获得积分10
2分钟前
3分钟前
tomorrow完成签到,获得积分10
3分钟前
tomorrow发布了新的文献求助10
3分钟前
啊哒吸哇完成签到,获得积分10
3分钟前
张同学快去做实验呀完成签到,获得积分10
3分钟前
4分钟前
4分钟前
科研通AI6应助儒雅的夏翠采纳,获得10
4分钟前
shhoing应助科研通管家采纳,获得10
5分钟前
wanci应助科研通管家采纳,获得10
5分钟前
shhoing应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
儒雅的夏翠完成签到,获得积分10
5分钟前
英俊的铭应助冷艳的萝莉采纳,获得30
5分钟前
6分钟前
6分钟前
shhoing应助科研通管家采纳,获得10
7分钟前
shhoing应助科研通管家采纳,获得10
7分钟前
7分钟前
阔达的沛文完成签到,获得积分10
7分钟前
7分钟前
Alanni完成签到 ,获得积分10
7分钟前
冷艳的萝莉完成签到,获得积分10
8分钟前
8分钟前
8分钟前
留胡子的裘完成签到 ,获得积分10
9分钟前
9分钟前
10分钟前
shhoing应助科研通管家采纳,获得10
11分钟前
xingsixs发布了新的文献求助10
11分钟前
xingsixs完成签到,获得积分10
11分钟前
科研通AI2S应助英勇的半蕾采纳,获得30
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558620
求助须知:如何正确求助?哪些是违规求助? 4643690
关于积分的说明 14671377
捐赠科研通 4584977
什么是DOI,文献DOI怎么找? 2515302
邀请新用户注册赠送积分活动 1489369
关于科研通互助平台的介绍 1460113