清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Prediction of Bone Mineral Density based on Computer Tomography Images Using Deep Learning Model

定量计算机断层扫描 骨质疏松症 骨矿物 医学 断层摄影术 骨密度 人口 分类 放射科 人工智能 计算机科学 内科学 环境卫生
作者
Jujia Li,Ping Zhang,Jingxu Xu,Ranxu Zhang,Congcong Ren,Fan Yang,Qian Li,Yanhong Dong,Jian Zhao,Chencui Huang
出处
期刊:Gerontology [S. Karger AG]
卷期号:71 (1): 1-10 被引量:3
标识
DOI:10.1159/000542396
摘要

Introduction: The problem of population aging is intensifying worldwide. Osteoporosis has become an important cause affecting the health status of older populations. However, the diagnosis of osteoporosis and people’s understanding of it are seriously insufficient. We aim to develop a deep learning model to automatically measure bone mineral density (BMD) and improve the diagnostic rate of osteoporosis. Methods: The images of 801 subjects with 2,080 vertebral bodies who underwent chest or abdominal paired computer tomography (CT) and quantitative computer tomography (QCT) scanning was retrieved from June 2020 to January 2022. The BMD of T11-L4 vertebral bodies was measured by QCT. Developing a multistage deep learning-based model to simulate the segmentation of the vertebral body and predict BMD. The subjects were randomly divided into training dataset, validation dataset and test dataset. Analyze the fitting effect between the BMD measured by the model and the standard BMD by QCT. Accuracy, precision, recall and f1-score were used to analyze the diagnostic performance according to categorization criterion measured by QCT. Results: 410 males (51.2%) and 391 females (48.8%) were included in this study. Among them, there were 154 (19.2%) males and 118 (14.7%) females aged 23–44; 182 (22.7%) males and 205 (25.6%) females aged 45–64; 74 (9.2%) males and 68 (8.5%) females aged 65–84. The number of vertebral bodies in the training dataset, the validation dataset, and the test dataset was 1433, 243, 404, respectively. In each dataset, the BMD of males and females decreases with age. There was a significant correlation between the BMD measured by the model and QCT, with the coefficient of determination (R2) 0.95–0.97. The diagnostic accuracy based on the model in the three datasets was 0.88, 0.91, and 0.91, respectively. Conclusion: The proposed multistage deep learning-based model can achieve automatic measurement of vertebral BMD and performed well in the prediction of osteoporosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
周萌完成签到 ,获得积分10
7秒前
雨竹完成签到,获得积分10
22秒前
28秒前
LiangRen完成签到 ,获得积分10
33秒前
量子星尘发布了新的文献求助10
34秒前
自由橘子完成签到 ,获得积分10
36秒前
胡国伦完成签到 ,获得积分10
43秒前
宇文雨文完成签到 ,获得积分10
47秒前
老年学术废物完成签到 ,获得积分10
1分钟前
xinjie发布了新的文献求助10
1分钟前
科研通AI2S应助xinjie采纳,获得10
1分钟前
邓娅琴完成签到 ,获得积分10
1分钟前
2分钟前
JamesPei应助科研通管家采纳,获得10
2分钟前
Orange应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
酷波er应助江锦雯采纳,获得10
2分钟前
2分钟前
江锦雯发布了新的文献求助10
2分钟前
长孙烙完成签到 ,获得积分10
3分钟前
江锦雯完成签到,获得积分10
3分钟前
FashionBoy应助铭铭采纳,获得10
3分钟前
3分钟前
拼搏问薇完成签到 ,获得积分10
4分钟前
隐形曼青应助Natefong采纳,获得30
4分钟前
4分钟前
铭铭发布了新的文献求助10
4分钟前
无私涔完成签到 ,获得积分10
4分钟前
海绵宝宝完成签到 ,获得积分10
4分钟前
momo完成签到 ,获得积分10
4分钟前
万能图书馆应助Mollyxueyue采纳,获得10
4分钟前
Lorain完成签到,获得积分10
5分钟前
白芍儿完成签到 ,获得积分10
5分钟前
吴静完成签到 ,获得积分10
5分钟前
白芍儿关注了科研通微信公众号
5分钟前
沫沫完成签到 ,获得积分10
5分钟前
6分钟前
Natefong发布了新的文献求助30
6分钟前
星辰大海应助科研通管家采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789050
求助须知:如何正确求助?哪些是违规求助? 5715108
关于积分的说明 15474142
捐赠科研通 4916990
什么是DOI,文献DOI怎么找? 2646699
邀请新用户注册赠送积分活动 1594363
关于科研通互助平台的介绍 1548810