亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of bone mineral density based on computer tomography images using deep learning model

定量计算机断层扫描 骨质疏松症 骨矿物 医学 断层摄影术 骨密度 人口 分类 放射科 人工智能 计算机科学 内科学 环境卫生
作者
Jujia Li,Ping Zhang,Jingxu Xu,Ranxu Zhang,Congcong Ren,Fan Yang,Qian Li,Yanhong Dong,Jian Zhao,Chencui Huang
出处
期刊:Gerontology [Karger Publishers]
卷期号:: 1-16
标识
DOI:10.1159/000542396
摘要

Introduction The problem of population aging is intensifying worldwide. Osteoporosis has become an important cause affecting the health status of older populations. However, the diagnosis of osteoporosis and people's understanding of it are seriously insufficient. We aim to develop a deep learning model to automatically measure bone mineral density (BMD) and improve the diagnostic rate of osteoporosis. Methods The images of 801 subjects with 2080 vertebral bodies who underwent abdominal paired computer tomography (CT) and quantitative computer tomography (QCT) scanning was retrived from June 2020 to January 2022. The BMD of T11-L4 vertebral bodies was measured by QCT. Developing a multi-stage deep learning-based model to simulate the segmentation of the vertebral body and predict BMD. The subjects were randomly divided into training dataset, validation dataset and test dataset. Analyze the fitting effect between the BMD measured by the model and the standard BMD by QCT. Accuracy, precision, recall and f1- score were used to analyze the diagnostic performance according to categorization criterion measured by QCT. Results 410 males (51.2%) and 391 females (48.8%) were included in this study. Among them, there were 154 (19.2%) males and 118 (14.7%) females aged 23-44; 182 (22.7%) males and 205 (25.6%) females aged 45-64; 74 (9.2%) males and 68 (8.5%) females aged 65-84. The number of vertebral bodies in the training dataset, the validation dataset, and the test dataset was 1433, 243, 404, respectively. In each dataset, the BMD of males and females decreases with age. There was a significant correlation between the BMD measured by the model and QCT, with the coefficient of determination (r2) 0.95-0.97. The diagnostic accuracy based on the model in the three datasets was 0.88, 0.91, and 0.91, respectively. Conclusion The proposed multi-stage deep learning-based model can achieve automatic measurement of vertebral BMD and performed well in the prediction of osteoporosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助theoxie采纳,获得30
17秒前
1分钟前
theoxie发布了新的文献求助30
1分钟前
Noob_saibot完成签到,获得积分10
2分钟前
drhwang完成签到,获得积分10
2分钟前
逝水完成签到 ,获得积分10
2分钟前
fufufu123完成签到 ,获得积分10
2分钟前
逝月完成签到,获得积分10
2分钟前
Sunny完成签到,获得积分10
3分钟前
Emperor完成签到 ,获得积分0
3分钟前
陶醉的烤鸡完成签到 ,获得积分10
3分钟前
charliechen完成签到 ,获得积分10
4分钟前
Banbor2021完成签到,获得积分10
5分钟前
tufei完成签到,获得积分10
5分钟前
天天快乐应助白萝卜采纳,获得20
5分钟前
7分钟前
白萝卜发布了新的文献求助20
7分钟前
滴滴如玉完成签到,获得积分10
8分钟前
科研通AI5应助白萝卜采纳,获得10
8分钟前
白萝卜完成签到,获得积分10
8分钟前
GrindSeason应助犹豫的海菡采纳,获得10
11分钟前
白奕完成签到,获得积分10
12分钟前
weimz完成签到,获得积分10
12分钟前
zz完成签到,获得积分10
12分钟前
伶俐的无颜完成签到 ,获得积分10
12分钟前
weimz发布了新的文献求助10
12分钟前
ss完成签到,获得积分10
12分钟前
13分钟前
13分钟前
yu发布了新的文献求助10
13分钟前
大模型应助yu采纳,获得10
13分钟前
Orange应助科研通管家采纳,获得10
14分钟前
领导范儿应助科研通管家采纳,获得10
14分钟前
椿·完成签到 ,获得积分10
14分钟前
14分钟前
铉莉发布了新的文献求助10
14分钟前
大模型应助铉莉采纳,获得10
15分钟前
Hillson完成签到,获得积分10
15分钟前
RIPCCCP完成签到,获得积分10
18分钟前
科研通AI5应助小羊羊采纳,获得10
18分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
江岸区志(下卷) 800
Wind energy generation systems - Part 3-2: Design requirements for floating offshore wind turbines 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Global Higher Education Practices in Times of Crisis: Questions for Sustainability and Digitalization 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3695083
求助须知:如何正确求助?哪些是违规求助? 3246636
关于积分的说明 9850483
捐赠科研通 2958210
什么是DOI,文献DOI怎么找? 1622043
邀请新用户注册赠送积分活动 767637
科研通“疑难数据库(出版商)”最低求助积分说明 741239