Prediction of bone mineral density based on computer tomography images using deep learning model

定量计算机断层扫描 骨质疏松症 骨矿物 医学 断层摄影术 骨密度 人口 分类 放射科 人工智能 计算机科学 内科学 环境卫生
作者
Jujia Li,Qian Zhang,Jingxu Xu,Ranxu Zhang,Congcong Ren,Fan Yang,Qian Li,Yanhong Dong,Jian Zhao,Chencui Huang
出处
期刊:Gerontology [S. Karger AG]
卷期号:: 1-16
标识
DOI:10.1159/000542396
摘要

Introduction The problem of population aging is intensifying worldwide. Osteoporosis has become an important cause affecting the health status of older populations. However, the diagnosis of osteoporosis and people's understanding of it are seriously insufficient. We aim to develop a deep learning model to automatically measure bone mineral density (BMD) and improve the diagnostic rate of osteoporosis. Methods The images of 801 subjects with 2080 vertebral bodies who underwent abdominal paired computer tomography (CT) and quantitative computer tomography (QCT) scanning was retrived from June 2020 to January 2022. The BMD of T11-L4 vertebral bodies was measured by QCT. Developing a multi-stage deep learning-based model to simulate the segmentation of the vertebral body and predict BMD. The subjects were randomly divided into training dataset, validation dataset and test dataset. Analyze the fitting effect between the BMD measured by the model and the standard BMD by QCT. Accuracy, precision, recall and f1- score were used to analyze the diagnostic performance according to categorization criterion measured by QCT. Results 410 males (51.2%) and 391 females (48.8%) were included in this study. Among them, there were 154 (19.2%) males and 118 (14.7%) females aged 23-44; 182 (22.7%) males and 205 (25.6%) females aged 45-64; 74 (9.2%) males and 68 (8.5%) females aged 65-84. The number of vertebral bodies in the training dataset, the validation dataset, and the test dataset was 1433, 243, 404, respectively. In each dataset, the BMD of males and females decreases with age. There was a significant correlation between the BMD measured by the model and QCT, with the coefficient of determination (r2) 0.95-0.97. The diagnostic accuracy based on the model in the three datasets was 0.88, 0.91, and 0.91, respectively. Conclusion The proposed multi-stage deep learning-based model can achieve automatic measurement of vertebral BMD and performed well in the prediction of osteoporosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助zhishi采纳,获得10
刚刚
机智的夜安完成签到 ,获得积分10
1秒前
爆米花应助Guapifei采纳,获得10
2秒前
欧阳完成签到,获得积分10
3秒前
3秒前
4秒前
玉衡完成签到,获得积分10
5秒前
共享精神应助王wt采纳,获得10
5秒前
明杰发布了新的文献求助10
5秒前
6秒前
myheng发布了新的文献求助10
7秒前
7秒前
7秒前
jojo完成签到,获得积分10
7秒前
大模型应助洂浔采纳,获得10
8秒前
犹豫千亦发布了新的文献求助10
8秒前
kekekelili完成签到,获得积分10
8秒前
aikeyan发布了新的文献求助10
8秒前
大气天抒发布了新的文献求助10
8秒前
可爱的函函应助袁思宇采纳,获得10
8秒前
随心完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
lanshuitai发布了新的文献求助10
9秒前
F1y发布了新的文献求助10
9秒前
hhllhh发布了新的文献求助10
9秒前
20230321发布了新的文献求助10
9秒前
10秒前
小毛驴完成签到,获得积分10
10秒前
10秒前
完美世界应助橘海万青采纳,获得10
11秒前
ivying0209完成签到,获得积分10
11秒前
11秒前
随心发布了新的文献求助10
12秒前
weywe完成签到,获得积分10
12秒前
欢欢完成签到,获得积分10
13秒前
尹静涵完成签到 ,获得积分10
13秒前
yryr完成签到 ,获得积分10
13秒前
Thomas完成签到,获得积分10
13秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3249240
求助须知:如何正确求助?哪些是违规求助? 2892603
关于积分的说明 8272618
捐赠科研通 2560858
什么是DOI,文献DOI怎么找? 1389289
科研通“疑难数据库(出版商)”最低求助积分说明 651107
邀请新用户注册赠送积分活动 627946