清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Prediction of Bone Mineral Density based on Computer Tomography Images Using Deep Learning Model

定量计算机断层扫描 骨质疏松症 骨矿物 医学 断层摄影术 骨密度 人口 分类 放射科 人工智能 计算机科学 内科学 环境卫生
作者
Jujia Li,Ping Zhang,Jingxu Xu,Ranxu Zhang,Congcong Ren,Fan Yang,Qian Li,Yanhong Dong,Jian Zhao,Chencui Huang
出处
期刊:Gerontology [S. Karger AG]
卷期号:71 (1): 1-10 被引量:3
标识
DOI:10.1159/000542396
摘要

Introduction: The problem of population aging is intensifying worldwide. Osteoporosis has become an important cause affecting the health status of older populations. However, the diagnosis of osteoporosis and people’s understanding of it are seriously insufficient. We aim to develop a deep learning model to automatically measure bone mineral density (BMD) and improve the diagnostic rate of osteoporosis. Methods: The images of 801 subjects with 2,080 vertebral bodies who underwent chest or abdominal paired computer tomography (CT) and quantitative computer tomography (QCT) scanning was retrieved from June 2020 to January 2022. The BMD of T11-L4 vertebral bodies was measured by QCT. Developing a multistage deep learning-based model to simulate the segmentation of the vertebral body and predict BMD. The subjects were randomly divided into training dataset, validation dataset and test dataset. Analyze the fitting effect between the BMD measured by the model and the standard BMD by QCT. Accuracy, precision, recall and f1-score were used to analyze the diagnostic performance according to categorization criterion measured by QCT. Results: 410 males (51.2%) and 391 females (48.8%) were included in this study. Among them, there were 154 (19.2%) males and 118 (14.7%) females aged 23–44; 182 (22.7%) males and 205 (25.6%) females aged 45–64; 74 (9.2%) males and 68 (8.5%) females aged 65–84. The number of vertebral bodies in the training dataset, the validation dataset, and the test dataset was 1433, 243, 404, respectively. In each dataset, the BMD of males and females decreases with age. There was a significant correlation between the BMD measured by the model and QCT, with the coefficient of determination (R2) 0.95–0.97. The diagnostic accuracy based on the model in the three datasets was 0.88, 0.91, and 0.91, respectively. Conclusion: The proposed multistage deep learning-based model can achieve automatic measurement of vertebral BMD and performed well in the prediction of osteoporosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
weiwei完成签到,获得积分10
23秒前
爱思考的小笨笨完成签到,获得积分10
24秒前
51秒前
研友_nxw2xL完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
如歌完成签到,获得积分10
1分钟前
阳光的丹雪完成签到,获得积分10
1分钟前
Criminology34应助Lulu采纳,获得10
1分钟前
1分钟前
多乐多发布了新的文献求助10
1分钟前
情怀应助多乐多采纳,获得10
1分钟前
蝎子莱莱xth完成签到,获得积分10
2分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
3分钟前
woxinyouyou完成签到,获得积分0
3分钟前
crazy完成签到,获得积分10
3分钟前
Square完成签到,获得积分10
3分钟前
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
h0jian09完成签到,获得积分10
3分钟前
lovelife完成签到,获得积分10
3分钟前
3分钟前
刘刘完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
魔幻的从丹完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
老石完成签到 ,获得积分10
5分钟前
Jessica应助hu采纳,获得10
5分钟前
5分钟前
5分钟前
雨jia完成签到,获得积分10
6分钟前
大个应助鹏哥爱科研采纳,获得10
6分钟前
6分钟前
6分钟前
George发布了新的文献求助10
6分钟前
自然亦凝完成签到,获得积分10
6分钟前
6分钟前
浑续发布了新的文献求助10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
LINDENG2004完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664535
求助须知:如何正确求助?哪些是违规求助? 4864753
关于积分的说明 15107992
捐赠科研通 4823177
什么是DOI,文献DOI怎么找? 2582040
邀请新用户注册赠送积分活动 1536144
关于科研通互助平台的介绍 1494545