幂零的
哈密顿量(控制论)
数学
中心(范畴论)
极限(数学)
班级(哲学)
哈密顿系统
纯数学
极限环
数学物理
数学分析
计算机科学
数学优化
化学
人工智能
结晶学
作者
Caiyu Liu,H. Liu,Feng Li,Meilan Cai
标识
DOI:10.1142/s0218127425500683
摘要
In this paper, we consider a class of near-Hamiltonian systems with a nilpotent center, and study the number of limit cycles including algebraic limit cycles. We prove that there are at most [Formula: see text] large amplitude limit cycles if the first-order Melnikov function is not zero identically, including an algebraic limit cycle. Moreover, it can have [Formula: see text] when [Formula: see text] and [Formula: see text] when [Formula: see text] small limit cycles. We also provide two examples as applications of our main results.
科研通智能强力驱动
Strongly Powered by AbleSci AI