The Future of Catalysis: Applying Graph Neural Networks for Intelligent Catalyst Design

催化作用 计算机科学 人工神经网络 图形 组合化学 化学 人工智能 理论计算机科学 有机化学
作者
Zhihao Wang,Wentao Li,Siying Wang,Xiaonan Wang
出处
期刊:Wiley Interdisciplinary Reviews: Computational Molecular Science [Wiley]
卷期号:15 (2)
标识
DOI:10.1002/wcms.70010
摘要

ABSTRACT With the increasing global demand for energy transition and environmental sustainability, catalysts play a vital role in mitigating global climate change, as they facilitate over 90% of chemical and material conversions. It is important to investigate the complex structures and properties of catalysts for enhanced performance, for which artificial intelligence (AI) methods, especially graph neural networks (GNNs) could be useful. In this article, we explore the cutting‐edge applications and future potential of GNNs in intelligent catalyst design. The fundamental theories of GNNs and their practical applications in catalytic material simulation and inverse design are first reviewed. We analyze the critical roles of GNNs in accelerating material screening, performance prediction, reaction pathway analysis, and mechanism modeling. By leveraging graph convolution techniques to accurately represent molecular structures, integrating symmetry constraints to ensure physical consistency, and applying generative models to efficiently explore the design space, these approaches work synergistically to enhance the efficiency and accuracy of catalyst design. Furthermore, we highlight high‐quality databases crucial for catalysis research and explore the innovative application of GNNs in thermocatalysis, electrocatalysis, photocatalysis, and biocatalysis. In the end, we highlight key directions for advancing GNNs in catalysis: dynamic frameworks for real‐time conditions, hierarchical models linking atomic details to catalyst features, multi‐task networks for performance prediction, and interpretability mechanisms to reveal critical reaction pathways. We believe these advancements will significantly broaden the role of GNNs in catalysis science, paving the way for more efficient, accurate, and sustainable catalyst design methodologies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助三余采纳,获得10
1秒前
落后冬云完成签到 ,获得积分10
1秒前
KM比比完成签到,获得积分10
1秒前
1秒前
幸运幸福发布了新的文献求助10
2秒前
2秒前
无情迎蕾完成签到,获得积分20
2秒前
FashionBoy应助Echo采纳,获得10
3秒前
nav发布了新的文献求助10
3秒前
JJ完成签到,获得积分10
4秒前
5秒前
迷人灵发布了新的文献求助30
6秒前
墨子白完成签到 ,获得积分10
6秒前
7秒前
bainwei完成签到,获得积分10
7秒前
归尘发布了新的文献求助10
8秒前
10秒前
orixero应助水月中辉采纳,获得10
10秒前
11秒前
Forever发布了新的文献求助10
11秒前
11秒前
周凡淇发布了新的文献求助10
13秒前
master-f发布了新的文献求助30
14秒前
三余发布了新的文献求助10
15秒前
传奇3应助而已采纳,获得20
15秒前
英俊白莲发布了新的文献求助50
16秒前
18秒前
学业顺利完成签到,获得积分10
20秒前
科研通AI5应助呆萌的正豪采纳,获得10
20秒前
22秒前
聪慧豁发布了新的文献求助10
23秒前
SYLH应助阳光的道消采纳,获得20
23秒前
24秒前
龙泉完成签到,获得积分10
24秒前
水门发布了新的文献求助10
25秒前
青藤应助无情迎蕾采纳,获得100
25秒前
科研通AI5应助平淡采纳,获得10
26秒前
27秒前
龙泉发布了新的文献求助10
27秒前
carl发布了新的文献求助10
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Maneuvering of a Damaged Navy Combatant 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769978
求助须知:如何正确求助?哪些是违规求助? 3315078
关于积分的说明 10174548
捐赠科研通 3030246
什么是DOI,文献DOI怎么找? 1662752
邀请新用户注册赠送积分活动 795095
科研通“疑难数据库(出版商)”最低求助积分说明 756560