催化作用
计算机科学
人工神经网络
图形
组合化学
化学
人工智能
理论计算机科学
有机化学
作者
Zhihao Wang,Wentao Li,Siying Wang,Xiaonan Wang
摘要
ABSTRACT With the increasing global demand for energy transition and environmental sustainability, catalysts play a vital role in mitigating global climate change, as they facilitate over 90% of chemical and material conversions. It is important to investigate the complex structures and properties of catalysts for enhanced performance, for which artificial intelligence (AI) methods, especially graph neural networks (GNNs) could be useful. In this article, we explore the cutting‐edge applications and future potential of GNNs in intelligent catalyst design. The fundamental theories of GNNs and their practical applications in catalytic material simulation and inverse design are first reviewed. We analyze the critical roles of GNNs in accelerating material screening, performance prediction, reaction pathway analysis, and mechanism modeling. By leveraging graph convolution techniques to accurately represent molecular structures, integrating symmetry constraints to ensure physical consistency, and applying generative models to efficiently explore the design space, these approaches work synergistically to enhance the efficiency and accuracy of catalyst design. Furthermore, we highlight high‐quality databases crucial for catalysis research and explore the innovative application of GNNs in thermocatalysis, electrocatalysis, photocatalysis, and biocatalysis. In the end, we highlight key directions for advancing GNNs in catalysis: dynamic frameworks for real‐time conditions, hierarchical models linking atomic details to catalyst features, multi‐task networks for performance prediction, and interpretability mechanisms to reveal critical reaction pathways. We believe these advancements will significantly broaden the role of GNNs in catalysis science, paving the way for more efficient, accurate, and sustainable catalyst design methodologies.
科研通智能强力驱动
Strongly Powered by AbleSci AI