Catalytic Metal‐Organic Framework‐Functionalized Inverse‐Opal Architectured Polymeric Separator for High‐Performance Li‐S Batteries

材料科学 分离器(采油) 反向 金属有机骨架 催化作用 金属 化学工程 纳米技术 有机化学 冶金 吸附 化学 物理 几何学 数学 工程类 热力学
作者
Xin Yang,Zongfu An,Peng Zhang,Soochan Kim,Pil J. Yoo
出处
期刊:Advanced Functional Materials [Wiley]
标识
DOI:10.1002/adfm.202419983
摘要

Abstract Separators are crucial in lithium‐sulfur batteries (LiSBs) to ensure optimal ion transport and prevent internal short circuits. High‐performance separators with excellent thermal stability, electrolyte wettability, porosity, and Li + selectivity are essential for the safety and enhancing the energy density of LiSBs. This is particularly important for mitigating polysulfide (LiPS) shuttling, which degrades both the capacity and cycling stability of LiSBs. In this work, a novel separator design for high‐performance LiSBs is introduced that combines a poly(ether ether ketone) (PEEK)‐based inverse opal (PIO) architecture with an in situ grown cobalt‐imidazole metal‐organic framework of ZIF‐67 on the polymeric surface. The PIO provides improved Li + conductivity due to the unique structural characteristics of inverse opal and the excellent thermal/mechanical properties of the PEEK. Additionally, ZIF‐67 imparts an enhanced electrochemical system through its selective permittivity to LiPS. The unique chemical configuration of ZIF‐67 significantly suppresses the LiPS shuttling; its negative imidazole sites accelerate Li + mobility while the Lewis acidic Co 2+ centers strongly interact with S x 2− base. Consequently, the LiSBs with the developed separator exhibits remarkable inhibition of LiPS shuttling due to synergistic effects from both Lewis acid‐base interactions and the physical characteristics of the separator. It also demonstrates effective regulation of Li‐dendrite growth, leading to enhanced cycling stability of LiSBs. With its greatly enhanced cycling performance, rate capability, and electrochemical stability, the ZIF‐PIO separator presented in this work provides a promising solution for practical LiSBs applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
科研通AI2S应助Zhusy采纳,获得10
7秒前
李东东完成签到 ,获得积分10
8秒前
橘子s发布了新的文献求助10
9秒前
9秒前
9秒前
Jasper应助老迟到的硬币采纳,获得10
11秒前
猫熊完成签到,获得积分20
11秒前
hyt完成签到 ,获得积分10
14秒前
正直的博发布了新的文献求助10
15秒前
17秒前
17秒前
jidou1011发布了新的文献求助10
17秒前
李若水发布了新的文献求助10
19秒前
20秒前
小马甲应助香蕉八宝粥采纳,获得10
22秒前
23秒前
正直的博完成签到,获得积分10
24秒前
25秒前
26秒前
VDC应助meng采纳,获得30
27秒前
桃子味的日落完成签到,获得积分10
27秒前
27秒前
Lucas应助隐形的灵松采纳,获得10
28秒前
邵邵发布了新的文献求助10
31秒前
爱吃西瓜发布了新的文献求助10
31秒前
hif1a发布了新的文献求助10
32秒前
老迟到的硬币完成签到,获得积分20
35秒前
LHZ完成签到,获得积分10
37秒前
快乐元菱完成签到 ,获得积分10
37秒前
39秒前
39秒前
科研通AI5应助yangyangyang采纳,获得10
39秒前
顺心醉蝶完成签到 ,获得积分10
40秒前
kangkang完成签到,获得积分10
40秒前
玩命的大神完成签到 ,获得积分10
43秒前
44秒前
996755完成签到 ,获得积分10
45秒前
46秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540614
求助须知:如何正确求助?哪些是违规求助? 3117897
关于积分的说明 9333158
捐赠科研通 2815765
什么是DOI,文献DOI怎么找? 1547752
邀请新用户注册赠送积分活动 721158
科研通“疑难数据库(出版商)”最低求助积分说明 712515