Application of Deep Learning-Based Object Detection Techniques in Fish Aquaculture: A Review

水产养殖 预处理器 目标检测 计算机科学 人工智能 对象(语法) 深度学习 模式识别(心理学) 计算机视觉 渔业 生物
作者
Hanchi Liu,Xin Ma,Yining Yu,Liang Wang,Hao Lin
出处
期刊:Journal of Marine Science and Engineering [Multidisciplinary Digital Publishing Institute]
卷期号:11 (4): 867-867 被引量:25
标识
DOI:10.3390/jmse11040867
摘要

Automated monitoring and analysis of fish’s growth status and behaviors can help scientific aquaculture management and reduce severe losses due to diseases or overfeeding. With developments in machine vision and deep learning (DL) techniques, DL-based object detection techniques have been extensively applied in aquaculture with the advantage of simultaneously classifying and localizing fish of interest in images. This study reviews the relevant research status of DL-based object detection techniques in fish counting, body length measurement, and individual behavior analysis in aquaculture. The research status is summarized from two aspects: image and video analysis. Moreover, the relevant technical details of DL-based object detection techniques applied to aquaculture are also summarized, including the dataset, image preprocessing methods, typical DL-based object detection algorithms, and evaluation metrics. Finally, the challenges and potential trends of DL-based object detection techniques in aquaculture are concluded and discussed. The review shows that generic DL-based object detection architectures have played important roles in aquaculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
g7001完成签到,获得积分10
刚刚
blue发布了新的文献求助10
刚刚
刘铭晨完成签到,获得积分10
刚刚
XYZ完成签到 ,获得积分10
1秒前
wmszhd完成签到,获得积分10
1秒前
付艳完成签到,获得积分10
1秒前
CAOHOU应助论文顺利采纳,获得10
2秒前
nancy93228完成签到 ,获得积分10
3秒前
搜集达人应助JW采纳,获得10
5秒前
???完成签到,获得积分10
7秒前
优秀的白曼完成签到,获得积分10
9秒前
王小西发布了新的文献求助10
10秒前
碧蓝莫言完成签到 ,获得积分10
12秒前
清璃完成签到 ,获得积分10
13秒前
虚心的寒梦完成签到,获得积分10
13秒前
秋秋发布了新的文献求助10
13秒前
kkk完成签到,获得积分10
15秒前
bnhh完成签到,获得积分10
15秒前
Betty应助lindahuang采纳,获得10
16秒前
ilk666完成签到,获得积分10
17秒前
小王同学发布了新的文献求助10
17秒前
奶油布丁完成签到,获得积分10
20秒前
酶没美镁完成签到,获得积分10
20秒前
天天快乐应助李治海采纳,获得10
21秒前
星辰大海应助lll采纳,获得10
21秒前
龙1完成签到,获得积分10
21秒前
yzhilson完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
23秒前
RRR完成签到,获得积分10
24秒前
金色天际线完成签到,获得积分10
25秒前
明ming到此一游完成签到 ,获得积分10
28秒前
pophoo完成签到,获得积分10
28秒前
11发布了新的文献求助10
29秒前
酷炫的黄豆完成签到 ,获得积分10
30秒前
hzz完成签到,获得积分10
33秒前
34秒前
深情安青应助科研通管家采纳,获得10
34秒前
fang应助科研通管家采纳,获得10
34秒前
Passskd发布了新的文献求助10
34秒前
fang应助科研通管家采纳,获得10
34秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038303
求助须知:如何正确求助?哪些是违规求助? 3576013
关于积分的说明 11374210
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029