Gradient microstructure and prominent performance of wire-arc directed energy deposited magnesium alloy via laser shock peening

材料科学 残余应力 微观结构 喷丸 喷丸 冶金 合金 极限抗拉强度 位错 复合材料 镁合金
作者
Xinzhi Li,Xuewei Fang,Mugong Zhang,Hongkai Zhang,Yusong Duan,Ke Huang
出处
期刊:International Journal of Machine Tools & Manufacture [Elsevier BV]
卷期号:188: 104029-104029 被引量:57
标识
DOI:10.1016/j.ijmachtools.2023.104029
摘要

Wire-arc directed energy deposition (DED) has attracted significant interest for the fabrication of large-sized, lightweight Mg-alloy components. However, these components generally exhibit poor mechanical properties and limited corrosion resistance owing to their inherent residual stress and non-equilibrium microstructures. Herein, laser shock peening (LSP) was adopted to successfully modify the stress state and microstructure of AZ31 Mg-alloy fabricated using wire-arc DED. The influence of LSP on the residual stress, mechanical properties, electrochemical behaviour, and microstructural evolution was systematically investigated. The experimental results indicate that, compared with the as-built specimen, the performance of the LSP-treated specimen was notable, with a ≈63.8% decrease in the corrosion current density and ≈30% and ≈13% decreases in the yield strength (YS) and ultimate tensile strength, respectively. The enhanced corrosion resistance can be attributed to the LSP-induced compressive residual stress, nanograins, and nanoparticles. Nanocrystallisation, particle refinement, dense mechanical twins (MTs), and planar dislocation arrays (PDAs) jointly contributed to the enhancement of the YS. The LSP-induced nanocrystallisation was rationalized by the accumulation of PDAs, the intersection of multiple nano-MTs, and the transformation of nano-MTs blocks into sub-grains and then into nanograins owing to continuous dynamic recrystallisation. The particle refinement mechanism involved dislocation proliferation and the development of dislocation slip bands, which eventually led to fragmentation and separation. Therefore, this study introduces a LSP post-treatment technology for the residual stress regulation, microstructural modification, and performance enhancement of Mg alloys fabricated using wire-arc DED. Based on the ability of LSP to tailor the microstructure and performance of Mg alloys, a novel method of wire-arc DED with online LSP treatment is proposed. This method can achieve in-situ surface strengthening and the integrated formation of large-sized components with complex geometries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助gt采纳,获得10
刚刚
满意的晓啸完成签到,获得积分10
1秒前
朴实子骞完成签到 ,获得积分10
1秒前
充电宝应助害羞的灵松采纳,获得10
2秒前
3秒前
5秒前
小蘑菇应助Jiaowen采纳,获得10
6秒前
syp发布了新的文献求助30
7秒前
阔达的凡发布了新的文献求助10
8秒前
33发布了新的文献求助10
11秒前
11秒前
万能图书馆应助研友_89jr6L采纳,获得10
11秒前
念姬发布了新的文献求助10
12秒前
33完成签到,获得积分10
16秒前
16秒前
科研通AI2S应助邢文瑞采纳,获得10
17秒前
20秒前
20秒前
吞吞完成签到 ,获得积分10
22秒前
syp完成签到,获得积分10
23秒前
小蒋完成签到 ,获得积分10
23秒前
23秒前
orange发布了新的文献求助10
24秒前
Jiaowen发布了新的文献求助10
24秒前
激动的项链完成签到,获得积分20
24秒前
25秒前
Ava应助hhh采纳,获得10
26秒前
归海浩阑完成签到,获得积分10
28秒前
俭朴依白完成签到,获得积分10
29秒前
李健的小迷弟应助LIFE2020采纳,获得10
29秒前
30秒前
xym发布了新的文献求助10
31秒前
31秒前
32秒前
斯文败类应助博修采纳,获得30
33秒前
34秒前
37秒前
Hermit发布了新的文献求助10
37秒前
薛言发布了新的文献求助10
38秒前
紫紫吃菠菜完成签到,获得积分10
38秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962917
求助须知:如何正确求助?哪些是违规求助? 3508861
关于积分的说明 11143755
捐赠科研通 3241789
什么是DOI,文献DOI怎么找? 1791689
邀请新用户注册赠送积分活动 873065
科研通“疑难数据库(出版商)”最低求助积分说明 803579