Gradient microstructure and prominent performance of wire-arc directed energy deposited magnesium alloy via laser shock peening

材料科学 残余应力 微观结构 喷丸 喷丸 冶金 合金 极限抗拉强度 位错 复合材料 镁合金
作者
Xinzhi Li,Xuewei Fang,Mugong Zhang,Hongkai Zhang,Yusong Duan,Ke Huang
出处
期刊:International Journal of Machine Tools & Manufacture [Elsevier BV]
卷期号:188: 104029-104029 被引量:57
标识
DOI:10.1016/j.ijmachtools.2023.104029
摘要

Wire-arc directed energy deposition (DED) has attracted significant interest for the fabrication of large-sized, lightweight Mg-alloy components. However, these components generally exhibit poor mechanical properties and limited corrosion resistance owing to their inherent residual stress and non-equilibrium microstructures. Herein, laser shock peening (LSP) was adopted to successfully modify the stress state and microstructure of AZ31 Mg-alloy fabricated using wire-arc DED. The influence of LSP on the residual stress, mechanical properties, electrochemical behaviour, and microstructural evolution was systematically investigated. The experimental results indicate that, compared with the as-built specimen, the performance of the LSP-treated specimen was notable, with a ≈63.8% decrease in the corrosion current density and ≈30% and ≈13% decreases in the yield strength (YS) and ultimate tensile strength, respectively. The enhanced corrosion resistance can be attributed to the LSP-induced compressive residual stress, nanograins, and nanoparticles. Nanocrystallisation, particle refinement, dense mechanical twins (MTs), and planar dislocation arrays (PDAs) jointly contributed to the enhancement of the YS. The LSP-induced nanocrystallisation was rationalized by the accumulation of PDAs, the intersection of multiple nano-MTs, and the transformation of nano-MTs blocks into sub-grains and then into nanograins owing to continuous dynamic recrystallisation. The particle refinement mechanism involved dislocation proliferation and the development of dislocation slip bands, which eventually led to fragmentation and separation. Therefore, this study introduces a LSP post-treatment technology for the residual stress regulation, microstructural modification, and performance enhancement of Mg alloys fabricated using wire-arc DED. Based on the ability of LSP to tailor the microstructure and performance of Mg alloys, a novel method of wire-arc DED with online LSP treatment is proposed. This method can achieve in-situ surface strengthening and the integrated formation of large-sized components with complex geometries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Michael_li完成签到,获得积分10
1秒前
肉片牛帅帅完成签到,获得积分10
2秒前
Nolan完成签到,获得积分10
2秒前
高大的友梅完成签到 ,获得积分10
3秒前
杨lan完成签到 ,获得积分10
4秒前
uone完成签到,获得积分10
4秒前
realtimes完成签到,获得积分10
4秒前
柠檬普洱茶完成签到,获得积分10
5秒前
称心人达完成签到,获得积分10
7秒前
一水独流完成签到,获得积分10
8秒前
昔昔完成签到 ,获得积分10
10秒前
King完成签到 ,获得积分10
10秒前
科研通AI5应助俭朴涫采纳,获得10
11秒前
Scss完成签到,获得积分10
11秒前
旱田蜗牛完成签到,获得积分10
11秒前
贰叁伍完成签到,获得积分10
12秒前
13秒前
赵怼怼完成签到,获得积分10
14秒前
梦在远方完成签到 ,获得积分10
14秒前
Mr.Ren完成签到,获得积分10
15秒前
嗯呢完成签到 ,获得积分10
18秒前
Xu完成签到,获得积分10
18秒前
xz发布了新的文献求助10
19秒前
ahh完成签到 ,获得积分10
19秒前
小熊完成签到,获得积分20
19秒前
甄遥完成签到,获得积分10
20秒前
王十二完成签到 ,获得积分10
20秒前
爱笑半雪完成签到,获得积分10
20秒前
蝈蝈完成签到,获得积分10
20秒前
21秒前
Tinweng完成签到 ,获得积分10
21秒前
MRJJJJ完成签到,获得积分10
23秒前
tigger完成签到,获得积分10
25秒前
冷艳铁身完成签到 ,获得积分10
25秒前
01259完成签到 ,获得积分10
25秒前
健壮洋葱完成签到 ,获得积分10
25秒前
阿南完成签到 ,获得积分10
26秒前
26秒前
大观天下发布了新的文献求助10
27秒前
研友_Z60ObL完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5188343
求助须知:如何正确求助?哪些是违规求助? 4372620
关于积分的说明 13613734
捐赠科研通 4225939
什么是DOI,文献DOI怎么找? 2318042
邀请新用户注册赠送积分活动 1316607
关于科研通互助平台的介绍 1266283