Prediction of stress-strain behavior of carbon fabric woven composites by deep neural network

复合材料 材料科学 极限抗拉强度 人工神经网络 机织物 应力-应变曲线 平纹织物 结构工程 抗压强度 压力(语言学) 纱线 计算机科学 人工智能 变形(气象学) 工程类 哲学 语言学
作者
Dug-Joong Kim,Gyu-Won Kim,Jeong-hyeon Baek,Byeung-Gun Nam,Hak‐Sung Kim
出处
期刊:Composite Structures [Elsevier BV]
卷期号:318: 117073-117073 被引量:29
标识
DOI:10.1016/j.compstruct.2023.117073
摘要

In this work, a novel deep neural network was proposed for predicting the mechanical behavior of plain carbon fabric reinforced woven composites. The deep neural network was trained by a pre-simulated stress-strain curve database of woven composites depending on yarn structures and the mechanical properties of the fiber and matrix. Micro-mechanics-based multi-scale analyses of woven composites were conducted for progressive damage analysis. These analyses utilized the stress amplification factor to transfer stress between the micro-scale and meso-scale simulations and the respective failure criteria were applied for micro-scale stresses of the fiber and matrix, respectively. The database of stress-strain curves under tensile, compressive and shear loading was acquired for different yarn geometries and constituent properties. These variables were used as training input and the resulting stress-strain curves were used as training output of the network. To optimize the network, hyper parameters of the neural network, such as the number of layers and nodes, were determined by the Hyperband optimization algorithm. The train and test of deep neural network model was performed by TensorFlow backend using the Keras library in Python. Mechanical tests were performed to validate the predicted mechanical behavior from both simulation and the deep neural network. As a result, the stress-strain curves under tensile, compressive and shear loading of arbitrary woven carbon composites can be successfully predicted in several seconds by the deep neural network with high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
坚强踏歌完成签到 ,获得积分10
刚刚
deerning完成签到,获得积分10
1秒前
阳佟问寒完成签到,获得积分20
1秒前
chunyuWang关注了科研通微信公众号
2秒前
2秒前
3秒前
3秒前
3秒前
4秒前
无花果应助梦到你的城市采纳,获得10
4秒前
4秒前
4秒前
4秒前
5秒前
xiao完成签到,获得积分10
5秒前
5秒前
5秒前
烟花应助紧张的寒梦采纳,获得10
6秒前
Akim应助研友_GZ3zRn采纳,获得10
6秒前
小马甲应助Wenyu Hu采纳,获得10
7秒前
7秒前
ylf完成签到,获得积分10
7秒前
7秒前
cc发布了新的文献求助10
8秒前
8秒前
小费发布了新的文献求助30
9秒前
桐桐应助lliinn0105采纳,获得10
9秒前
长情诗蕾发布了新的文献求助10
10秒前
甜儿发布了新的文献求助10
10秒前
10秒前
小江发布了新的文献求助10
10秒前
zhk发布了新的文献求助10
11秒前
11秒前
白了个白发布了新的文献求助10
11秒前
12秒前
weiwei发布了新的文献求助10
13秒前
14秒前
嘻嘻哈哈完成签到 ,获得积分10
14秒前
烟花应助Jinna706采纳,获得10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951972
求助须知:如何正确求助?哪些是违规求助? 3497327
关于积分的说明 11086901
捐赠科研通 3228016
什么是DOI,文献DOI怎么找? 1784585
邀请新用户注册赠送积分活动 868794
科研通“疑难数据库(出版商)”最低求助积分说明 801180