Prediction of stress-strain behavior of carbon fabric woven composites by deep neural network

复合材料 材料科学 极限抗拉强度 人工神经网络 机织物 应力-应变曲线 平纹织物 结构工程 抗压强度 压力(语言学) 纱线 计算机科学 人工智能 变形(气象学) 工程类 语言学 哲学
作者
Dug-Joong Kim,Gyu-Won Kim,Jeong-hyeon Baek,Byeung-Gun Nam,Hak‐Sung Kim
出处
期刊:Composite Structures [Elsevier]
卷期号:318: 117073-117073 被引量:13
标识
DOI:10.1016/j.compstruct.2023.117073
摘要

In this work, a novel deep neural network was proposed for predicting the mechanical behavior of plain carbon fabric reinforced woven composites. The deep neural network was trained by a pre-simulated stress-strain curve database of woven composites depending on yarn structures and the mechanical properties of the fiber and matrix. Micro-mechanics-based multi-scale analyses of woven composites were conducted for progressive damage analysis. These analyses utilized the stress amplification factor to transfer stress between the micro-scale and meso-scale simulations and the respective failure criteria were applied for micro-scale stresses of the fiber and matrix, respectively. The database of stress-strain curves under tensile, compressive and shear loading was acquired for different yarn geometries and constituent properties. These variables were used as training input and the resulting stress-strain curves were used as training output of the network. To optimize the network, hyper parameters of the neural network, such as the number of layers and nodes, were determined by the Hyperband optimization algorithm. The train and test of deep neural network model was performed by TensorFlow backend using the Keras library in Python. Mechanical tests were performed to validate the predicted mechanical behavior from both simulation and the deep neural network. As a result, the stress-strain curves under tensile, compressive and shear loading of arbitrary woven carbon composites can be successfully predicted in several seconds by the deep neural network with high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狂野砖头完成签到,获得积分10
刚刚
wanci应助LHX采纳,获得10
1秒前
1秒前
有魅力听枫完成签到,获得积分10
2秒前
阿橘完成签到,获得积分10
2秒前
彭于彦祖应助Dingyiren采纳,获得20
4秒前
4秒前
小白发布了新的文献求助10
4秒前
轻松的曲奇完成签到,获得积分10
5秒前
wangbq完成签到,获得积分10
6秒前
闪闪的妙竹完成签到 ,获得积分10
6秒前
6秒前
XINGXING发布了新的文献求助10
6秒前
8秒前
yyyyyj关注了科研通微信公众号
9秒前
wangbq发布了新的文献求助10
9秒前
AAA完成签到,获得积分10
10秒前
拼搏遥完成签到,获得积分10
12秒前
雷小牛发布了新的文献求助10
12秒前
搞怪便当完成签到,获得积分10
13秒前
空空完成签到,获得积分10
14秒前
shanyuee完成签到,获得积分10
14秒前
俏皮诺言发布了新的文献求助10
18秒前
miao完成签到,获得积分10
19秒前
20秒前
酷波er应助水濑心源采纳,获得10
21秒前
21秒前
科研通AI2S应助金属多酚采纳,获得10
23秒前
hujin应助金属多酚采纳,获得10
23秒前
wangbq发布了新的文献求助10
23秒前
Ymir完成签到,获得积分10
24秒前
乌龟娟发布了新的文献求助10
25秒前
小二郎应助吃吃采纳,获得10
26秒前
海龟完成签到 ,获得积分10
26秒前
26秒前
Ymir发布了新的文献求助10
27秒前
大秦骑兵完成签到,获得积分20
27秒前
28秒前
29秒前
秀丽的剑心完成签到,获得积分10
30秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163348
求助须知:如何正确求助?哪些是违规求助? 2814206
关于积分的说明 7903775
捐赠科研通 2473774
什么是DOI,文献DOI怎么找? 1317050
科研通“疑难数据库(出版商)”最低求助积分说明 631614
版权声明 602187