GPT-NER: Named Entity Recognition via Large Language Models

命名实体识别 任务(项目管理) 计算机科学 序列标记 人工智能 自然语言处理 序列(生物学) 生物 遗传学 工程类 系统工程
作者
Shuhe Wang,Xiaofei Sun,Xiaoya Li,Rongbin Ouyang,Fei Wu,Tianwei Zhang,Jiwei Li,Guoyin Wang
出处
期刊:Cornell University - arXiv 被引量:62
标识
DOI:10.48550/arxiv.2304.10428
摘要

Despite the fact that large-scale Language Models (LLM) have achieved SOTA performances on a variety of NLP tasks, its performance on NER is still significantly below supervised baselines. This is due to the gap between the two tasks the NER and LLMs: the former is a sequence labeling task in nature while the latter is a text-generation model. In this paper, we propose GPT-NER to resolve this issue. GPT-NER bridges the gap by transforming the sequence labeling task to a generation task that can be easily adapted by LLMs e.g., the task of finding location entities in the input text "Columbus is a city" is transformed to generate the text sequence "@@Columbus## is a city", where special tokens @@## marks the entity to extract. To efficiently address the "hallucination" issue of LLMs, where LLMs have a strong inclination to over-confidently label NULL inputs as entities, we propose a self-verification strategy by prompting LLMs to ask itself whether the extracted entities belong to a labeled entity tag. We conduct experiments on five widely adopted NER datasets, and GPT-NER achieves comparable performances to fully supervised baselines, which is the first time as far as we are concerned. More importantly, we find that GPT-NER exhibits a greater ability in the low-resource and few-shot setups, when the amount of training data is extremely scarce, GPT-NER performs significantly better than supervised models. This demonstrates the capabilities of GPT-NER in real-world NER applications where the number of labeled examples is limited.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助犹豫囧采纳,获得10
刚刚
科目三应助东山采纳,获得10
2秒前
哭泣灯泡完成签到,获得积分10
2秒前
2秒前
KinoFreeze完成签到 ,获得积分10
3秒前
23lk发布了新的文献求助10
6秒前
NexusExplorer应助雪衣豆沙采纳,获得10
6秒前
乾雨完成签到 ,获得积分20
7秒前
kk发布了新的文献求助10
9秒前
嗷呜煲崽饭完成签到 ,获得积分10
10秒前
10秒前
蛋黄啵啵发布了新的文献求助150
11秒前
12秒前
清玖发布了新的文献求助10
12秒前
顺利毕业完成签到 ,获得积分10
13秒前
酷波er应助kk采纳,获得10
14秒前
乘风破浪完成签到,获得积分10
16秒前
Jane_2022发布了新的文献求助10
16秒前
16秒前
17秒前
18秒前
19秒前
mjsdx完成签到 ,获得积分10
19秒前
忽忽发布了新的文献求助10
20秒前
20秒前
20秒前
22秒前
FFFFFFF应助小巧谷波采纳,获得10
22秒前
111发布了新的文献求助10
22秒前
坚定的飞阳完成签到 ,获得积分10
23秒前
24秒前
24秒前
20250702关注了科研通微信公众号
25秒前
kk发布了新的文献求助10
25秒前
杨柳依依发布了新的文献求助10
25秒前
量子星尘发布了新的文献求助10
26秒前
26秒前
乐乐应助gloooow采纳,获得10
26秒前
27秒前
zzxx完成签到 ,获得积分10
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956520
求助须知:如何正确求助?哪些是违规求助? 3502655
关于积分的说明 11109426
捐赠科研通 3233441
什么是DOI,文献DOI怎么找? 1787343
邀请新用户注册赠送积分活动 870650
科研通“疑难数据库(出版商)”最低求助积分说明 802141