GPT-NER: Named Entity Recognition via Large Language Models

命名实体识别 任务(项目管理) 计算机科学 序列标记 人工智能 自然语言处理 序列(生物学) 生物 遗传学 工程类 系统工程
作者
Shuhe Wang,Xiaofei Sun,Xiaoya Li,Rongbin Ouyang,Fei Wu,Tianwei Zhang,Jiwei Li,Guoyin Wang
出处
期刊:Cornell University - arXiv 被引量:62
标识
DOI:10.48550/arxiv.2304.10428
摘要

Despite the fact that large-scale Language Models (LLM) have achieved SOTA performances on a variety of NLP tasks, its performance on NER is still significantly below supervised baselines. This is due to the gap between the two tasks the NER and LLMs: the former is a sequence labeling task in nature while the latter is a text-generation model. In this paper, we propose GPT-NER to resolve this issue. GPT-NER bridges the gap by transforming the sequence labeling task to a generation task that can be easily adapted by LLMs e.g., the task of finding location entities in the input text "Columbus is a city" is transformed to generate the text sequence "@@Columbus## is a city", where special tokens @@## marks the entity to extract. To efficiently address the "hallucination" issue of LLMs, where LLMs have a strong inclination to over-confidently label NULL inputs as entities, we propose a self-verification strategy by prompting LLMs to ask itself whether the extracted entities belong to a labeled entity tag. We conduct experiments on five widely adopted NER datasets, and GPT-NER achieves comparable performances to fully supervised baselines, which is the first time as far as we are concerned. More importantly, we find that GPT-NER exhibits a greater ability in the low-resource and few-shot setups, when the amount of training data is extremely scarce, GPT-NER performs significantly better than supervised models. This demonstrates the capabilities of GPT-NER in real-world NER applications where the number of labeled examples is limited.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
静笃发布了新的文献求助10
3秒前
4秒前
4秒前
pluto应助ww采纳,获得10
5秒前
CodeCraft应助luckyhan采纳,获得10
6秒前
安雯完成签到 ,获得积分10
7秒前
自然幻竹完成签到,获得积分10
8秒前
niu完成签到 ,获得积分10
9秒前
七慕凉应助小可采纳,获得20
9秒前
10秒前
shufessm完成签到,获得积分0
10秒前
12秒前
14秒前
嘿嘿发布了新的文献求助10
15秒前
15秒前
科研通AI6应助冷静的闭月采纳,获得10
17秒前
风中访冬完成签到,获得积分20
17秒前
无聊的冰兰完成签到,获得积分10
17秒前
19秒前
1816013153发布了新的文献求助10
20秒前
酷波er应助果冻呀采纳,获得10
21秒前
大大大漂亮完成签到 ,获得积分10
22秒前
23秒前
leo完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助10
25秒前
小可应助文件撤销了驳回
25秒前
个性半山完成签到 ,获得积分10
26秒前
26秒前
26秒前
26秒前
28秒前
28秒前
搜集达人应助风中访冬采纳,获得10
28秒前
zsyhcl完成签到,获得积分10
29秒前
30秒前
太昊陵发布了新的文献求助10
30秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536900
求助须知:如何正确求助?哪些是违规求助? 4624585
关于积分的说明 14592312
捐赠科研通 4565008
什么是DOI,文献DOI怎么找? 2502121
邀请新用户注册赠送积分活动 1480851
关于科研通互助平台的介绍 1452093