From Small Data Modeling to Large Language Model Screening: A Dual‐Strategy Framework for Materials Intelligent Design

计算机科学 自动汇总 管道(软件) 数据驱动 对偶(语法数字) 数据挖掘 机器学习 人工智能 艺术 文学类 程序设计语言
作者
Yeyong Yu,Jie Xiong,Xing Zheng Wu,Quan Qian
出处
期刊:Advanced Science [Wiley]
标识
DOI:10.1002/advs.202403548
摘要

Abstract Small data in materials present significant challenges to constructing highly accurate machine learning models, severely hindering the widespread implementation of data‐driven materials intelligent design. In this study, the Dual‐Strategy Materials Intelligent Design Framework (DSMID) is introduced, which integrates two innovative methods. The Adversarial domain Adaptive Embedding Generative network (AAEG) transfers data between related property datasets, even with only 90 data points, enhancing material composition characterization and improving property prediction. Additionally, to address the challenge of screening and evaluating numerous alloy designs, the Automated Material Screening and Evaluation Pipeline (AMSEP) is implemented. This pipeline utilizes large language models with extensive domain knowledge to efficiently identify promising experimental candidates through self‐retrieval and self‐summarization. Experimental findings demonstrate that this approach effectively identifies and prepares new eutectic High Entropy Alloy (EHEA), notably Al 14 (CoCrFe) 19 Ni 28 , achieving an ultimate tensile strength of 1085 MPa and 24% elongation without heat treatment or extra processing. This demonstrates significantly greater plasticity and equivalent strength compared to the typical as‐cast eutectic HEA AlCoCrFeNi 2.1 . The DSMID framework, combining AAEG and AMSEP, addresses the challenges of small data modeling and extensive candidate screening, contributing to cost reduction and enhanced efficiency of material design. This framework offers a promising avenue for intelligent material design, particularly in scenarios constrained by limited data availability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
rmbsLHC完成签到,获得积分20
1秒前
wuqi完成签到 ,获得积分20
2秒前
2秒前
Muran完成签到,获得积分0
2秒前
3秒前
Lucas应助迅速又菡采纳,获得10
3秒前
5秒前
研友_knggYn发布了新的文献求助10
5秒前
七七完成签到 ,获得积分10
5秒前
情怀应助lycoris采纳,获得10
5秒前
6秒前
6秒前
6秒前
7秒前
Ava应助ffffff采纳,获得10
7秒前
7秒前
研友_VZG7GZ应助rmbsLHC采纳,获得10
7秒前
123123完成签到 ,获得积分10
8秒前
随机游动完成签到,获得积分10
8秒前
xiaodu20230228完成签到 ,获得积分10
8秒前
KEHUGE完成签到,获得积分10
9秒前
9秒前
充电宝应助是小袁呀采纳,获得10
9秒前
可靠访蕊完成签到 ,获得积分10
10秒前
haha111发布了新的文献求助10
11秒前
浅尝离白完成签到,获得积分0
11秒前
忆修完成签到,获得积分10
11秒前
12秒前
深情安青应助二东采纳,获得10
12秒前
12秒前
12秒前
小荣布布完成签到 ,获得积分10
12秒前
12秒前
12秒前
14秒前
TRISTE发布了新的文献求助10
14秒前
mimi完成签到,获得积分10
16秒前
可爱的函函应助322小弟采纳,获得10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
The potential of upadacitinib in treating co-occurring atopic dermatitis and ulcerative colitis 200
A proof-of-concept study on a universal standard kit to evaluate the risks of inspectors for their foundational ability of visual inspection of injectable drug products 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3696214
求助须知:如何正确求助?哪些是违规求助? 3248178
关于积分的说明 9856417
捐赠科研通 2959686
什么是DOI,文献DOI怎么找? 1622819
邀请新用户注册赠送积分活动 768283
科研通“疑难数据库(出版商)”最低求助积分说明 741451