Unveiling Energy Efficiency in Deep Learning: Measurement, Prediction, and Scoring across Edge Devices

计算机科学 GSM演进的增强数据速率 深度学习 人工智能 高效能源利用 机器学习 工程类 电气工程
作者
Xiaolong Tu,Anik Mallik,Dawei Chen,Kyungtae Han,Onur Altintas,Haoxin Wang,Jiang Xie
标识
DOI:10.1145/3583740.3628442
摘要

Today, deep learning optimization is primarily driven by research focused on achieving high inference accuracy and reducing latency.However, the energy efficiency aspect is often overlooked, possibly due to a lack of sustainability mindset in the field and the absence of a holistic energy dataset.In this paper, we conduct a threefold study, including energy measurement, prediction, and efficiency scoring, with an objective to foster transparency in power and energy consumption within deep learning across various edge devices.Firstly, we present a detailed, first-of-its-kind measurement study that uncovers the energy consumption characteristics of on-device deep learning.This study results in the creation of three extensive energy datasets for edge devices, covering a wide range of kernels, state-of-the-art DNN models, and popular AI applications.Secondly, we design and implement the first kernellevel energy predictors for edge devices based on our kernel-level energy dataset.Evaluation results demonstrate the ability of our predictors to provide consistent and accurate energy estimations on unseen DNN models.Lastly, we introduce two scoring metrics, PCS and IECS, developed to convert complex power and energy consumption data of an edge device into an easily understandable manner for edge device end-users.We hope our work can help shift the mindset of both end-users and the research community towards sustainability in edge computing, a principle that drives our research.Find data, code, and more up-to-date information at https://amai-gsu.github.io/DeepEn2023.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缥缈的绿兰完成签到,获得积分10
1秒前
寒树发布了新的文献求助10
2秒前
3秒前
5秒前
雁塔吃辣条完成签到,获得积分10
5秒前
青柠发布了新的文献求助10
8秒前
cctv18应助xzx7086采纳,获得10
8秒前
完美世界应助啦啦啦采纳,获得10
8秒前
8秒前
小二郎应助香辣鸡腿堡采纳,获得10
10秒前
只只发布了新的文献求助10
11秒前
吱吱草莓派完成签到 ,获得积分10
12秒前
源源完成签到,获得积分10
12秒前
12秒前
俏皮果汁完成签到,获得积分10
13秒前
lanlan发布了新的文献求助10
14秒前
14秒前
000完成签到 ,获得积分10
14秒前
15秒前
希望天下0贩的0应助星星_采纳,获得10
15秒前
16秒前
16秒前
aaafa发布了新的文献求助10
16秒前
哒哒哒完成签到,获得积分10
17秒前
诚心八宝粥完成签到,获得积分10
18秒前
AHR发布了新的文献求助10
19秒前
19秒前
善良青筠发布了新的文献求助10
19秒前
故笺发布了新的文献求助10
20秒前
gigi发布了新的文献求助10
21秒前
上官若男应助孟遇采纳,获得10
21秒前
正直翎发布了新的文献求助10
22秒前
24秒前
24秒前
刘一三完成签到 ,获得积分10
25秒前
科研通AI5应助LNN采纳,获得10
27秒前
28秒前
慕青应助科研通管家采纳,获得20
28秒前
充电宝应助科研通管家采纳,获得10
28秒前
今后应助科研通管家采纳,获得10
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3756463
求助须知:如何正确求助?哪些是违规求助? 3299827
关于积分的说明 10111524
捐赠科研通 3014401
什么是DOI,文献DOI怎么找? 1655483
邀请新用户注册赠送积分活动 789943
科研通“疑难数据库(出版商)”最低求助积分说明 753511