Determination of Gas–Oil minimum miscibility pressure for impure CO2 through optimized machine learning models

混溶性 材料科学 石油工程 热力学 工程类 复合材料 物理 聚合物
作者
Chenyu Wu,Lu Jin,Jin Zhao,Xincheng Wan,Tao Jiang,Kegang Ling
标识
DOI:10.1016/j.geoen.2024.213216
摘要

Minimum miscibility pressure (MMP) is one of the most important parameters for designing CO 2 enhanced oil recovery (EOR) and associated storage in depleted oil reservoirs. The injection gas stream often contains a certain concentration of impurities such as N 2 , H 2 S, and CH 4 depending on the source of CO 2 . These impurities have different effects on CO 2 MMP, but there is a lack of widely accepted approaches to account for these effects on MMP calculation. In this study, a series of activities were conducted to develop a machine learning (ML)-based methodology for determining MMP for CO 2 with various impurities. A database containing 234 CO 2 MMP test sets with around 5000 data points was built based on the reported experimental measurements in the public domain. The database was then subgrouped by three specific criteria: CO 2 concentration in the injection gas, type of impurities in the injection gas, and heavier hydrocarbon content in the oil. This subgrouping was essential to capture the impact of different factors on CO 2 MMP. An ensemble ML approach with seven ML models, including random forest, adaptive boosting, light gradient boosting machine, extreme gradient boosting (XGBoost), stacking, artificial neural network, and voting regressor, was employed to calculate MMP based on the subgrouped database. The hyperparameters of these ML models were optimized by the grid search technique to minimize the relative errors between calculated and measured MMP values. The performance of each algorithm was assessed using three regression metrics: average absolute relative error (AARE), R-squared score (R 2 ), and root mean square error (RMSE). All of these metrics exhibited satisfactory values for the optimized ML models. The average values of R 2 , RMSE, and AARE were 0.962, 1.571, and 4.55%, respectively, for the three subgroups, indicating a high accuracy of MMP calculations using the optimized ML models. The XGBoost model emerged as the top performer across the three metrics, with an R 2 of 0.979, an AARE of 2.835%, and an RMSE of 1.183 for a dataset with 190 cases. The overall high level of accuracy confirmed the reliability of these ML models in calculating MMP for CO 2 with different impurities as well as the importance of optimization in the modeling process. • A database with 234 measurements was developed for impure CO 2 MMP investigation. • Seven machine learning models were used to calculate MMP for CO 2 with impurities. • The ML models were optimized by data subgrouping and grid search technique. • The optimized ML models calculated MMP for impure CO 2 accurately. • All three regression metrics confirmed the reliability of the MMP calculation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
guozizi发布了新的文献求助30
刚刚
1秒前
2秒前
迅速的鹤完成签到,获得积分10
3秒前
5秒前
二牛完成签到,获得积分10
5秒前
Whenhow发布了新的文献求助10
6秒前
大个应助TIGun采纳,获得10
7秒前
7秒前
123完成签到,获得积分10
7秒前
9秒前
9秒前
songsong668发布了新的文献求助10
9秒前
9秒前
10秒前
秣旎完成签到,获得积分10
11秒前
文静的开山完成签到,获得积分10
13秒前
Aroma发布了新的文献求助10
14秒前
翁雁丝发布了新的文献求助10
14秒前
kzb发布了新的文献求助10
15秒前
月牙泉发布了新的文献求助10
15秒前
16秒前
小兔叽完成签到,获得积分10
17秒前
聪明士晋完成签到,获得积分10
18秒前
20秒前
20秒前
Akim应助月牙泉采纳,获得10
21秒前
余红完成签到,获得积分10
22秒前
24秒前
character577完成签到,获得积分10
24秒前
Haley完成签到,获得积分10
24秒前
多喝水发布了新的文献求助10
24秒前
24秒前
25秒前
会飞的鱼完成签到,获得积分10
25秒前
26秒前
Lucas应助nature采纳,获得10
28秒前
28秒前
28秒前
一生所爱完成签到,获得积分10
28秒前
高分求助中
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3433875
求助须知:如何正确求助?哪些是违规求助? 3031024
关于积分的说明 8940659
捐赠科研通 2719043
什么是DOI,文献DOI怎么找? 1491619
科研通“疑难数据库(出版商)”最低求助积分说明 689336
邀请新用户注册赠送积分活动 685486