窗口(计算)
锂(药物)
石墨
磷酸盐
磷酸铁锂
磷酸铁
材料科学
化学
化学工程
冶金
电化学
电极
计算机科学
生物化学
心理学
物理化学
工程类
万维网
精神科
作者
Eniko Zsoldos,D. W. Thompson,W. A. P. Black,Saad Azam,J. R. Dahn
出处
期刊:Journal of The Electrochemical Society
[The Electrochemical Society]
日期:2024-08-08
标识
DOI:10.1149/1945-7111/ad6cbd
摘要
Abstract Lithium iron phosphate (LFP) battery cells are ubiquitous in electric vehicles and stationary energy storage because they are cheap and have a long lifetime. This work compares LFP/graphite pouch cells undergoing charge-discharge cycles over five state of charge (SOC) windows (0 – 25%, 0- 60%, 0 – 80%, 0 – 100%, and 75 – 100%). Cycling LFP cells across a lower average SOC results in less capacity fade than cycling across a higher average SOC, regardless of depth of discharge. The primary capacity fade mechanism is lithium inventory loss due to: lithiated graphite reactivity with electrolyte, which increases incrementally with SOC, and lithium alkoxide species causing iron dissolution and deposition on the negative electrode at high SOC which further accelerates lithium inventory loss. Our results show that even low voltage LFP systems (3.65 V) have a tradeoff between average SOC and lifetime. Operating LFP cells at lower average SOC can extend their lifetime substantially in both EV and grid storage applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI