CMSSP: A Contrastive Mass Spectra-Structure Pretraining Model for Metabolite Identification

化学 代谢物 质谱 鉴定(生物学) 谱线 质谱法 色谱法 生物化学 植物 生物 物理 天文
作者
Lu Chen,Bing Xia,Yu Wang,Xia Huang,Yu‐Cheng Gu,Wenlin Wu,Yan Zhou
出处
期刊:Analytical Chemistry [American Chemical Society]
标识
DOI:10.1021/acs.analchem.4c03724
摘要

A pivotal challenge in metabolite research is the structural annotation of metabolites from tandem mass spectrometry (MS/MS) data. The integration of artificial intelligence (AI) has revolutionized the interpretation of MS data, facilitating the identification of elusive metabolites within the metabolomics landscape. Innovative methodologies are primarily focusing on transforming MS/MS spectra or molecular structures into a unified modality to enable similarity-based comparison and interpretation. In this work, we present CMSSP, a novel Contrastive Mass Spectra-Structure Pretraining framework designed for metabolite annotation. The primary objective of CMSSP is to establish a representation space that facilitates a direct comparison between MS/MS spectra and molecular structures, transcending the limitations of distinct modalities. The evaluation on two benchmark test sets demonstrates the efficacy of the approach. CMSSP achieved a remarkable enhancement in annotation accuracy, outperforming the state-of-the-art methods by a significant margin. Specifically, it improved the top-1 accuracy by 30% on the CASMI 2017 data set and realized a 16% increase in top-10 accuracy on an independent test set. Moreover, the model displayed superior identification accuracy across all seven chemical categories, showcasing its robustness and versatility. Finally, the MS/MS data of 30 metabolites from Glycyrrhiza glabra were analyzed, achieving top-1 and top-3 accuracies of 86.7 and 100%, respectively. The CMSSP model serves as a potent tool for the dissection and interpretation of intricate MS/MS data, propelling the field toward more accurate and efficient metabolite annotation. This not only augments the analytical capabilities of metabolomics but also paves the way for future discoveries in understanding of complex biological systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
葡萄干发布了新的文献求助10
1秒前
浮云发布了新的文献求助30
1秒前
丘比特应助安好采纳,获得10
2秒前
4秒前
ww完成签到,获得积分10
5秒前
Missing完成签到,获得积分10
5秒前
香蕉觅云应助123456采纳,获得10
8秒前
9秒前
ccc发布了新的文献求助10
10秒前
感性的梦竹完成签到,获得积分10
11秒前
11秒前
1128完成签到 ,获得积分10
14秒前
干羞花发布了新的文献求助10
15秒前
柳听白发布了新的文献求助10
16秒前
17秒前
姜灭绝完成签到,获得积分10
19秒前
123456发布了新的文献求助10
22秒前
22秒前
憨憨完成签到 ,获得积分10
23秒前
24秒前
25秒前
十公里发布了新的文献求助10
25秒前
Akim应助江苏吴世勋采纳,获得10
25秒前
妮妮发布了新的文献求助10
27秒前
红豆面包发布了新的文献求助10
29秒前
Fengliguantou发布了新的文献求助10
30秒前
30秒前
万能图书馆应助野生菜狗采纳,获得10
30秒前
刘金凤完成签到,获得积分20
30秒前
聪明摩托发布了新的文献求助10
31秒前
研友_VZG7GZ应助付小佳采纳,获得10
33秒前
33秒前
刘金凤发布了新的文献求助10
34秒前
哈哈哈完成签到 ,获得积分10
38秒前
Jasper应助Fengliguantou采纳,获得10
39秒前
小榔头发布了新的文献求助10
39秒前
ccc完成签到,获得积分10
39秒前
领导范儿应助choi采纳,获得10
41秒前
善学以致用应助666采纳,获得10
41秒前
CipherSage应助lenny采纳,获得10
42秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151919
求助须知:如何正确求助?哪些是违规求助? 2803228
关于积分的说明 7852576
捐赠科研通 2460608
什么是DOI,文献DOI怎么找? 1309955
科研通“疑难数据库(出版商)”最低求助积分说明 629070
版权声明 601760