亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Interfacial Reaction Boosts Thermal Conductance of Room‐Temperature Integrated Semiconductor Interfaces Stable up to 1100 °C

材料科学 半导体 电导 热的 热导率 纳米技术 化学工程 光电子学 复合材料 凝聚态物理 热力学 物理 工程类
作者
Xiaoyang Ji,Zifeng Huang,Yutaka Ohno,Koji Inoue,Yasusyohi Nagai,Yoshiki Sakaida,Hiroki Uratani,Jinchi Sun,Naoteru Shigekawa,Jianbo Liang,Zhe Cheng
出处
期刊:Advanced electronic materials [Wiley]
标识
DOI:10.1002/aelm.202400387
摘要

Abstract Overheating has emerged as a primary challenge constraining the reliability and performance of next‐generation high‐performance (ultra)wide bandgap (WBG or UWBG) electronics. Advanced heterogeneous bonding of high‐thermal‐conductivity WBG thin films and substrates not only constitutes a pivotal technique for fabricating these electronics but also offers potential solutions for thermal management. This study presents the integration of 3C‐silicon carbide (SiC) thin films and diamond substrates through a surface‐activated bonding technique. Notably, following annealing, the interfaces between 3C‐SiC and diamond demonstrate an enhancement in thermal boundary conductance (TBC), reaching up to ≈300%, surpassing all other grown and bonded heterointerfaces. This enhancement is attributed to interfacial reactions, specifically the transformation of amorphous silicon into SiC upon interaction with diamond, which is further corroborated by picosecond ultrasonics measurements. After annealing at 1100 °C, the achieved TBC (150 MW m −2 K −1 ) is among the highest among all bonded diamond interfaces. Additionally, the visualization of large‐area TBC, facilitated by femtosecond laser‐based time‐domain thermoreflectance measurements, shows the uniformity of the interfaces which are capable of withstanding temperatures as high as 1100 °C. The research marks a significant advancement in the realm of thermally conductive WBG/substrate bonding, which is promising for enhanced cooling of next‐generation electronics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ao123发布了新的文献求助10
3秒前
11秒前
xyxuan完成签到,获得积分20
12秒前
wuhaixia完成签到,获得积分10
22秒前
褚明雪完成签到 ,获得积分10
27秒前
远道关注了科研通微信公众号
27秒前
勤恳慕蕊完成签到 ,获得积分10
41秒前
高晨旭完成签到 ,获得积分10
42秒前
Singularity应助YAN1214采纳,获得10
43秒前
凤凰之玉完成签到,获得积分10
45秒前
寻道图强应助xyxuan采纳,获得30
51秒前
58秒前
酸奶应助HS采纳,获得10
1分钟前
1分钟前
淙淙完成签到,获得积分10
1分钟前
1分钟前
康康完成签到 ,获得积分10
1分钟前
ao123完成签到,获得积分20
1分钟前
浮梦发布了新的文献求助10
1分钟前
今后应助ii采纳,获得10
1分钟前
CodeCraft应助细胞的狗奴才采纳,获得10
1分钟前
浮梦完成签到,获得积分10
1分钟前
Akim应助Sebastian采纳,获得10
1分钟前
1分钟前
Wednesday Chong完成签到 ,获得积分10
1分钟前
星辰大海应助科研通管家采纳,获得10
1分钟前
缓慢的煜祺应助HS采纳,获得10
1分钟前
1分钟前
沐沐发布了新的文献求助10
1分钟前
NexusExplorer应助F.T采纳,获得10
1分钟前
端庄的魔镜完成签到 ,获得积分10
1分钟前
樱桃猴子完成签到,获得积分10
1分钟前
1分钟前
1分钟前
葛二蛋完成签到,获得积分10
1分钟前
1分钟前
Xiao完成签到,获得积分10
2分钟前
善良水壶完成签到,获得积分10
2分钟前
2分钟前
wdt完成签到,获得积分10
2分钟前
高分求助中
Sustainability in ’Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3072532
求助须知:如何正确求助?哪些是违规求助? 2726325
关于积分的说明 7493607
捐赠科研通 2374046
什么是DOI,文献DOI怎么找? 1258858
科研通“疑难数据库(出版商)”最低求助积分说明 610394
版权声明 596983