钙钛矿(结构)
材料科学
二苯并噻吩
分子
偶极子
化学工程
有机化学
硫黄
冶金
化学
工程类
作者
Junjie Zhou,Lei Chen,Zijun Ma,Xiwei Liao,Yujing Yan,Ziyin Chen,Yuhang Yang,Yan Wang,Wei Ma,Yichen Wang,Xiaoting Nie,Pengyun Huo,Xiang Fang,Jing Zhang,Yi Zhou,Bo Song,Ningyi Yuan
标识
DOI:10.1021/acsami.4c12783
摘要
Organic–inorganic hybrid perovskite solar cells (OIH-PSCs) have developed rapidly in the past decade, and the commercialization of OIH-PSCs demands low-cost hole-transport materials (HTMs) with high performance and stability. The present study synthesized two organic HTMs containing dibenzothiophene S-dioxide as the acceptor unit and triphenylamine as the donor (denoted by TPAF-SO2 and TPA-SO2). In TPAF-SO2, the methoxy group and adjacent fluorine atom were introduced to decrease the highest occupied molecular orbital energy level. In TPA-SO2, the methyl sulfide group is the end group that can passivate the lead ion. TPAF-SO2 and TPA-SO2 exhibit hole-transport mobilities as high as 1.12 × 10–3 and 2.31 × 10–3 cm2 v–1 s–1, respectively, and strongly passivate Pb vacancies. Compared with TPAF-SO2, TPA-SO2 is more suitable for the growth of perovskite crystals. The perovskite grown on the latter has a lower trap density and higher carrier mobility; thus, both the nonradiative recombination and the charge-transport loss are decreased. The OIH-PSC based on TPA-SO2 as the HTM achieved a power conversion efficiency (PCE) as high as 22.08%, whereas the device based on TPAF-SO2 achieved a PCE of only 18.42%. In addition, the unencapsulated device based on TPA-SO2 can maintain 85% of the initial PCE after being stored in N2 for 1200 h, whereas the device based on TPAF-SO2 decayed rapidly to zero in 800 h under the same conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI