Nanoscale Engineering of Wurtzite Ferroelectrics: Unveiling Phase Transition and Ferroelectric Switching in ScAlN Nanowires

铁电性 纳米线 材料科学 纳米尺度 纤锌矿晶体结构 相变 纳米技术 凝聚态物理 工程物理 光电子学 电介质 工程类 物理 冶金
作者
Ding Wang,Ping Wang,Shubham Mondal,Mingtao Hu,Yuanpeng Wu,Danhao Wang,Kai Sun,Zetian Mi
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2408.02576
摘要

The pursuit of extreme device miniaturization and the exploration of novel physical phenomena have spurred significant interest in crystallographic phase control and ferroelectric switching in reduced dimensions. Recently, wurtzite ferroelectrics have emerged as a new class of functional materials, offering intriguing piezoelectric and ferroelectric properties, CMOS compatibility, and seamless integration with mainstream semiconductor technology. However, the exploration of crystallographic phase and ferroelectric switching in reduced dimensions, especially in nanostructures, has remained a largely uncharted territory. In this study, we present the first comprehensive investigation into the crystallographic phase transition of ScAlN nanowires across the full Sc compositional range. While a gradual transition from wurtzite to cubic phase was observed with increasing Sc composition, we further demonstrated that a highly ordered wurtzite phase ScAlN could be confined at the ScAlN/GaN interface for Sc contents surpassing what is possible in conventional films, holding great potential to addressing the fundamental high coercive field of wurtzite ferroelectrics. In addition, we provide the first evidence of ferroelectric switching in ScAlN nanowires, a result that holds significant implications for future device miniaturization. Our demonstration of tunable ferroelectric ScAlN nanowires opens new possibilities for nanoscale, domain, alloy, strain, and quantum engineering of wurtzite ferroelectrics, representing a significant stride towards the development of next-generation, miniaturized devices based on wurtzite ferroelectrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
核桃应助曾经的碧萱采纳,获得10
1秒前
Lny完成签到,获得积分0
1秒前
1秒前
宁静致远完成签到,获得积分10
2秒前
吴大宝完成签到,获得积分10
2秒前
2秒前
神锋天下完成签到,获得积分10
3秒前
无花果应助鑫搭采纳,获得10
3秒前
azusa完成签到,获得积分10
3秒前
波比冰苏打完成签到,获得积分10
3秒前
Diane完成签到,获得积分10
3秒前
酷酷的安柏完成签到 ,获得积分10
4秒前
烧瓶杀手完成签到,获得积分10
5秒前
5秒前
专注雁芙发布了新的文献求助10
5秒前
砍柴少年发布了新的文献求助10
5秒前
英勇孤丹完成签到 ,获得积分10
6秒前
6秒前
6秒前
大模型应助无限的依波采纳,获得10
6秒前
苏七完成签到,获得积分10
6秒前
忧郁的风华完成签到,获得积分10
6秒前
标致冬日发布了新的文献求助10
6秒前
文艺雁菱完成签到,获得积分10
7秒前
CINDERICE完成签到,获得积分10
8秒前
才露尖尖角完成签到,获得积分10
8秒前
研友_VZG7GZ应助曾经不言采纳,获得10
9秒前
916应助Crystal采纳,获得10
9秒前
ztt发布了新的文献求助10
9秒前
9秒前
wsd886发布了新的文献求助10
10秒前
xuzijian发布了新的文献求助10
10秒前
如果我沉默完成签到,获得积分10
10秒前
hkh发布了新的文献求助10
10秒前
Owen应助迷你的百川采纳,获得10
11秒前
缓慢的书蝶完成签到,获得积分10
11秒前
11秒前
山鬼完成签到,获得积分10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950088
求助须知:如何正确求助?哪些是违规求助? 3495487
关于积分的说明 11077296
捐赠科研通 3226021
什么是DOI,文献DOI怎么找? 1783386
邀请新用户注册赠送积分活动 867687
科研通“疑难数据库(出版商)”最低求助积分说明 800855