Nanoscale Engineering of Wurtzite Ferroelectrics: Unveiling Phase Transition and Ferroelectric Switching in ScAlN Nanowires

铁电性 纳米线 材料科学 纳米尺度 纤锌矿晶体结构 相变 纳米技术 凝聚态物理 工程物理 光电子学 电介质 工程类 物理 冶金
作者
Ding Wang,Ping Wang,Shubham Mondal,Mingtao Hu,Yuanpeng Wu,Danhao Wang,Kai Sun,Zetian Mi
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2408.02576
摘要

The pursuit of extreme device miniaturization and the exploration of novel physical phenomena have spurred significant interest in crystallographic phase control and ferroelectric switching in reduced dimensions. Recently, wurtzite ferroelectrics have emerged as a new class of functional materials, offering intriguing piezoelectric and ferroelectric properties, CMOS compatibility, and seamless integration with mainstream semiconductor technology. However, the exploration of crystallographic phase and ferroelectric switching in reduced dimensions, especially in nanostructures, has remained a largely uncharted territory. In this study, we present the first comprehensive investigation into the crystallographic phase transition of ScAlN nanowires across the full Sc compositional range. While a gradual transition from wurtzite to cubic phase was observed with increasing Sc composition, we further demonstrated that a highly ordered wurtzite phase ScAlN could be confined at the ScAlN/GaN interface for Sc contents surpassing what is possible in conventional films, holding great potential to addressing the fundamental high coercive field of wurtzite ferroelectrics. In addition, we provide the first evidence of ferroelectric switching in ScAlN nanowires, a result that holds significant implications for future device miniaturization. Our demonstration of tunable ferroelectric ScAlN nanowires opens new possibilities for nanoscale, domain, alloy, strain, and quantum engineering of wurtzite ferroelectrics, representing a significant stride towards the development of next-generation, miniaturized devices based on wurtzite ferroelectrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
领导范儿应助库里强采纳,获得100
1秒前
bkagyin应助开朗寇采纳,获得10
1秒前
空曲发布了新的文献求助10
1秒前
小二郎应助twob采纳,获得10
3秒前
呆瓜发布了新的文献求助10
4秒前
wanci应助活泼的觅云采纳,获得10
4秒前
我是谁完成签到,获得积分10
4秒前
LSx发布了新的文献求助10
4秒前
阳pipi发布了新的文献求助10
6秒前
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
彭于晏应助科研通管家采纳,获得10
9秒前
桐桐应助科研通管家采纳,获得10
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
QDU应助科研通管家采纳,获得10
10秒前
bkagyin应助科研通管家采纳,获得10
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
10秒前
11秒前
情怀应助亮晶晶采纳,获得10
11秒前
12秒前
13秒前
13秒前
13秒前
14秒前
科目三应助陶1122采纳,获得10
14秒前
GJ发布了新的文献求助10
15秒前
16秒前
MMMMM发布了新的文献求助10
17秒前
yyt发布了新的文献求助10
17秒前
DrYang完成签到,获得积分20
17秒前
cocolu应助忧郁虔采纳,获得10
17秒前
18秒前
甜甜的元瑶完成签到,获得积分10
18秒前
一丁雨发布了新的文献求助10
19秒前
20秒前
Jasper应助热闹的冬天采纳,获得10
20秒前
20秒前
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Cognitive Paradigms in Knowledge Organisation 1000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306956
求助须知:如何正确求助?哪些是违规求助? 2940786
关于积分的说明 8498612
捐赠科研通 2614927
什么是DOI,文献DOI怎么找? 1428599
科研通“疑难数据库(出版商)”最低求助积分说明 663447
邀请新用户注册赠送积分活动 648297