Analyzing User Reviews on Digital Detox Apps: A Text Mining and Sentiment Analysis Approach

情绪分析 计算机科学 万维网 数据科学 情报检索 心理学 互联网隐私 自然语言处理
作者
Nazar Fatima Khan,Mohammed Naved Khan
出处
期刊:Journal of Consumer Behaviour [Wiley]
标识
DOI:10.1002/cb.2424
摘要

ABSTRACT Due to the growing concerns around problematic smartphone use and its negative impact, there is a rising interest in digital detox. While many digital detox apps have been developed in recent years, there is still limited understanding of the long‐term effectiveness of digital detox applications and the attitude of people towards these apps. This study fills this gap by identifying the topics that people post in their reviews on the Google Play Store about digital detox apps and the emotion‐based sentiment of those reviews. A total of 3500 reviews of 25 digital detox apps were collected from the Google Play Store using a scraping tool called “Parsehub.” Data was analyzed using R studio. Sentiment analysis results suggest that positive sentiments dominated the data frame. “Trust” and “anticipation” were the two most expressed emotions in the reviews. Regression analysis confirmed that sentiment scores could explain the ratings of the apps. Through LDA topic modeling four major topics of the reviews were identified and are discussed in detail in the later section of the research paper. The findings of this study may help app developers and marketers improve digital detox apps so that people can learn and practice mindful smartphone use with the help of these apps. This study fills a gap in digital detox research by adopting a new methodological approach and procedure since it combines text mining, sentiment analysis (NRC Lexicon using Syuzhet package), regression analysis, and LDA topic modeling. To the best of our knowledge, this is the first study which uses this research approach in the context of digital detox apps.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
我是老大应助沙拉酱采纳,获得10
1秒前
1秒前
ding应助yunmeng采纳,获得10
1秒前
1秒前
背后的雪卉应助Saluzi采纳,获得10
1秒前
阳光之柔完成签到,获得积分10
1秒前
David发布了新的文献求助10
2秒前
睡呀发布了新的文献求助20
3秒前
天天快乐应助墨子白采纳,获得30
4秒前
思源应助甘地采纳,获得10
4秒前
4秒前
5秒前
小李关注了科研通微信公众号
5秒前
思君会于斑斓完成签到,获得积分10
5秒前
5秒前
lu发布了新的文献求助10
6秒前
6秒前
在水一方应助默默善愁采纳,获得10
7秒前
科研通AI6应助优雅的笑阳采纳,获得10
8秒前
8秒前
西瓜妹发布了新的文献求助10
8秒前
张叶卓完成签到,获得积分20
8秒前
9秒前
9秒前
10秒前
天天快乐应助Janus采纳,获得10
11秒前
12秒前
sinon完成签到,获得积分10
13秒前
13秒前
外向樱发布了新的文献求助10
14秒前
wynne完成签到 ,获得积分10
14秒前
忧伤的桐应助WWW采纳,获得10
14秒前
15秒前
buno应助skr采纳,获得10
15秒前
诡瞳GT完成签到 ,获得积分10
15秒前
领导范儿应助苏佳韩采纳,获得10
15秒前
16秒前
congcong发布了新的文献求助30
16秒前
墨子白发布了新的文献求助30
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588804
求助须知:如何正确求助?哪些是违规求助? 4671698
关于积分的说明 14788829
捐赠科研通 4626418
什么是DOI,文献DOI怎么找? 2531970
邀请新用户注册赠送积分活动 1500530
关于科研通互助平台的介绍 1468329