清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Analyzing User Reviews on Digital Detox Apps: A Text Mining and Sentiment Analysis Approach

情绪分析 计算机科学 万维网 数据科学 情报检索 心理学 互联网隐私 自然语言处理
作者
Nazar Fatima Khan,Mohammed Naved Khan
出处
期刊:Journal of Consumer Behaviour [Wiley]
标识
DOI:10.1002/cb.2424
摘要

ABSTRACT Due to the growing concerns around problematic smartphone use and its negative impact, there is a rising interest in digital detox. While many digital detox apps have been developed in recent years, there is still limited understanding of the long‐term effectiveness of digital detox applications and the attitude of people towards these apps. This study fills this gap by identifying the topics that people post in their reviews on the Google Play Store about digital detox apps and the emotion‐based sentiment of those reviews. A total of 3500 reviews of 25 digital detox apps were collected from the Google Play Store using a scraping tool called “Parsehub.” Data was analyzed using R studio. Sentiment analysis results suggest that positive sentiments dominated the data frame. “Trust” and “anticipation” were the two most expressed emotions in the reviews. Regression analysis confirmed that sentiment scores could explain the ratings of the apps. Through LDA topic modeling four major topics of the reviews were identified and are discussed in detail in the later section of the research paper. The findings of this study may help app developers and marketers improve digital detox apps so that people can learn and practice mindful smartphone use with the help of these apps. This study fills a gap in digital detox research by adopting a new methodological approach and procedure since it combines text mining, sentiment analysis (NRC Lexicon using Syuzhet package), regression analysis, and LDA topic modeling. To the best of our knowledge, this is the first study which uses this research approach in the context of digital detox apps.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朱敛完成签到,获得积分20
3秒前
汉堡包应助科研通管家采纳,获得10
4秒前
Zcl完成签到 ,获得积分10
18秒前
苏梗完成签到 ,获得积分10
57秒前
1分钟前
1分钟前
小蘑菇应助aayy采纳,获得30
1分钟前
jie完成签到 ,获得积分10
1分钟前
大医仁心完成签到 ,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
轨迹应助ceeray23采纳,获得20
2分钟前
2分钟前
乌迪尔应助ceeray23采纳,获得200
2分钟前
3分钟前
3分钟前
3分钟前
自然亦凝完成签到,获得积分10
3分钟前
xiaohu完成签到 ,获得积分10
5分钟前
5分钟前
烟花应助科研通管家采纳,获得10
6分钟前
MchemG应助科研通管家采纳,获得10
6分钟前
闲人颦儿完成签到,获得积分0
6分钟前
感动的小甜瓜给感动的小甜瓜的求助进行了留言
6分钟前
6分钟前
方白秋完成签到,获得积分0
6分钟前
Hello应助00采纳,获得10
7分钟前
狂野的含烟完成签到 ,获得积分10
7分钟前
MchemG应助科研通管家采纳,获得10
8分钟前
LeoBigman完成签到 ,获得积分10
8分钟前
8分钟前
Eileen完成签到 ,获得积分0
8分钟前
8分钟前
8分钟前
9分钟前
9分钟前
00发布了新的文献求助10
9分钟前
freebird完成签到,获得积分10
9分钟前
CodeCraft应助iman采纳,获得10
9分钟前
量子星尘发布了新的文献求助10
9分钟前
科研通AI6应助科研通管家采纳,获得10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681806
求助须知:如何正确求助?哪些是违规求助? 5013763
关于积分的说明 15176137
捐赠科研通 4841302
什么是DOI,文献DOI怎么找? 2595086
邀请新用户注册赠送积分活动 1548130
关于科研通互助平台的介绍 1506143