已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Analyzing User Reviews on Digital Detox Apps: A Text Mining and Sentiment Analysis Approach

情绪分析 计算机科学 万维网 数据科学 情报检索 心理学 互联网隐私 自然语言处理
作者
Nazar Fatima Khan,Mohammed Naved Khan
出处
期刊:Journal of Consumer Behaviour [Wiley]
标识
DOI:10.1002/cb.2424
摘要

ABSTRACT Due to the growing concerns around problematic smartphone use and its negative impact, there is a rising interest in digital detox. While many digital detox apps have been developed in recent years, there is still limited understanding of the long‐term effectiveness of digital detox applications and the attitude of people towards these apps. This study fills this gap by identifying the topics that people post in their reviews on the Google Play Store about digital detox apps and the emotion‐based sentiment of those reviews. A total of 3500 reviews of 25 digital detox apps were collected from the Google Play Store using a scraping tool called “Parsehub.” Data was analyzed using R studio. Sentiment analysis results suggest that positive sentiments dominated the data frame. “Trust” and “anticipation” were the two most expressed emotions in the reviews. Regression analysis confirmed that sentiment scores could explain the ratings of the apps. Through LDA topic modeling four major topics of the reviews were identified and are discussed in detail in the later section of the research paper. The findings of this study may help app developers and marketers improve digital detox apps so that people can learn and practice mindful smartphone use with the help of these apps. This study fills a gap in digital detox research by adopting a new methodological approach and procedure since it combines text mining, sentiment analysis (NRC Lexicon using Syuzhet package), regression analysis, and LDA topic modeling. To the best of our knowledge, this is the first study which uses this research approach in the context of digital detox apps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小远发布了新的文献求助10
2秒前
肉肉完成签到 ,获得积分10
2秒前
liuqi完成签到 ,获得积分10
2秒前
852应助123采纳,获得10
8秒前
BEYOND啊完成签到 ,获得积分10
10秒前
sugarballer完成签到 ,获得积分10
10秒前
liming_li完成签到,获得积分10
10秒前
发C刊的人完成签到 ,获得积分10
11秒前
SCI完成签到 ,获得积分10
12秒前
xuxuxuxuxu完成签到 ,获得积分10
13秒前
ZM完成签到 ,获得积分10
15秒前
打打应助zhou采纳,获得10
16秒前
苗条世德完成签到,获得积分10
16秒前
噜噜晓完成签到 ,获得积分10
16秒前
16秒前
有川洋一完成签到 ,获得积分10
18秒前
泽灵完成签到,获得积分10
18秒前
cgsu完成签到,获得积分10
20秒前
Brain完成签到 ,获得积分10
20秒前
天天向上发布了新的文献求助10
20秒前
踏雪完成签到,获得积分10
21秒前
22秒前
Hiraeth完成签到 ,获得积分10
23秒前
summer木完成签到,获得积分20
23秒前
无zzz的人发布了新的文献求助10
23秒前
852应助拾柒采纳,获得10
23秒前
1461644768完成签到,获得积分10
24秒前
klio完成签到 ,获得积分10
27秒前
wch完成签到 ,获得积分20
27秒前
111完成签到 ,获得积分10
29秒前
30秒前
伊萨卡完成签到 ,获得积分10
30秒前
深情安青应助能干的人采纳,获得10
33秒前
duobao鱼完成签到,获得积分10
33秒前
34秒前
34秒前
kaka完成签到,获得积分0
37秒前
严明完成签到,获得积分10
41秒前
严明完成签到,获得积分10
41秒前
乐风完成签到 ,获得积分10
41秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959930
求助须知:如何正确求助?哪些是违规求助? 3506191
关于积分的说明 11128233
捐赠科研通 3238160
什么是DOI,文献DOI怎么找? 1789535
邀请新用户注册赠送积分活动 871810
科研通“疑难数据库(出版商)”最低求助积分说明 803024