Analyzing User Reviews on Digital Detox Apps: A Text Mining and Sentiment Analysis Approach

情绪分析 计算机科学 万维网 数据科学 情报检索 心理学 互联网隐私 自然语言处理
作者
Nazar Fatima Khan,Mohammed Naved Khan
出处
期刊:Journal of Consumer Behaviour [Wiley]
标识
DOI:10.1002/cb.2424
摘要

ABSTRACT Due to the growing concerns around problematic smartphone use and its negative impact, there is a rising interest in digital detox. While many digital detox apps have been developed in recent years, there is still limited understanding of the long‐term effectiveness of digital detox applications and the attitude of people towards these apps. This study fills this gap by identifying the topics that people post in their reviews on the Google Play Store about digital detox apps and the emotion‐based sentiment of those reviews. A total of 3500 reviews of 25 digital detox apps were collected from the Google Play Store using a scraping tool called “Parsehub.” Data was analyzed using R studio. Sentiment analysis results suggest that positive sentiments dominated the data frame. “Trust” and “anticipation” were the two most expressed emotions in the reviews. Regression analysis confirmed that sentiment scores could explain the ratings of the apps. Through LDA topic modeling four major topics of the reviews were identified and are discussed in detail in the later section of the research paper. The findings of this study may help app developers and marketers improve digital detox apps so that people can learn and practice mindful smartphone use with the help of these apps. This study fills a gap in digital detox research by adopting a new methodological approach and procedure since it combines text mining, sentiment analysis (NRC Lexicon using Syuzhet package), regression analysis, and LDA topic modeling. To the best of our knowledge, this is the first study which uses this research approach in the context of digital detox apps.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平淡新晴发布了新的文献求助10
刚刚
DAI正杰发布了新的文献求助10
刚刚
机灵水卉发布了新的文献求助20
刚刚
天真铅笔发布了新的文献求助10
1秒前
yx发布了新的文献求助10
1秒前
2秒前
自觉南风完成签到,获得积分10
2秒前
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
奶斯发布了新的文献求助10
3秒前
jojo发布了新的文献求助10
4秒前
5秒前
arnoan发布了新的文献求助10
5秒前
lalala发布了新的文献求助10
5秒前
自信青筠完成签到 ,获得积分10
5秒前
星晴遇见花海完成签到,获得积分10
6秒前
水上汀州完成签到 ,获得积分10
6秒前
科研通AI6应助XiaoJie采纳,获得10
7秒前
7秒前
zyh完成签到,获得积分10
7秒前
7秒前
小小完成签到,获得积分10
8秒前
南桥发布了新的文献求助10
8秒前
8秒前
风中元瑶完成签到 ,获得积分10
8秒前
冰雪物语完成签到,获得积分10
8秒前
清爽四娘完成签到,获得积分10
8秒前
LL发布了新的文献求助10
9秒前
9秒前
jjjincc完成签到,获得积分10
10秒前
情怀应助平泽唯采纳,获得10
10秒前
榛糕李发布了新的文献求助10
10秒前
越听初完成签到,获得积分10
10秒前
11秒前
落桑发布了新的文献求助10
11秒前
arnoan完成签到,获得积分10
11秒前
lan完成签到,获得积分10
11秒前
诺非完成签到,获得积分10
12秒前
练英雄完成签到 ,获得积分20
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718409
求助须知:如何正确求助?哪些是违规求助? 5252448
关于积分的说明 15285701
捐赠科研通 4868645
什么是DOI,文献DOI怎么找? 2614320
邀请新用户注册赠送积分活动 1564168
关于科研通互助平台的介绍 1521611