Analyzing User Reviews on Digital Detox Apps: A Text Mining and Sentiment Analysis Approach

情绪分析 计算机科学 万维网 数据科学 情报检索 心理学 互联网隐私 自然语言处理
作者
Nazar Fatima Khan,Mohammed Naved Khan
出处
期刊:Journal of Consumer Behaviour [Wiley]
标识
DOI:10.1002/cb.2424
摘要

ABSTRACT Due to the growing concerns around problematic smartphone use and its negative impact, there is a rising interest in digital detox. While many digital detox apps have been developed in recent years, there is still limited understanding of the long‐term effectiveness of digital detox applications and the attitude of people towards these apps. This study fills this gap by identifying the topics that people post in their reviews on the Google Play Store about digital detox apps and the emotion‐based sentiment of those reviews. A total of 3500 reviews of 25 digital detox apps were collected from the Google Play Store using a scraping tool called “Parsehub.” Data was analyzed using R studio. Sentiment analysis results suggest that positive sentiments dominated the data frame. “Trust” and “anticipation” were the two most expressed emotions in the reviews. Regression analysis confirmed that sentiment scores could explain the ratings of the apps. Through LDA topic modeling four major topics of the reviews were identified and are discussed in detail in the later section of the research paper. The findings of this study may help app developers and marketers improve digital detox apps so that people can learn and practice mindful smartphone use with the help of these apps. This study fills a gap in digital detox research by adopting a new methodological approach and procedure since it combines text mining, sentiment analysis (NRC Lexicon using Syuzhet package), regression analysis, and LDA topic modeling. To the best of our knowledge, this is the first study which uses this research approach in the context of digital detox apps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
changping应助王东采纳,获得10
1秒前
2秒前
赵文浩完成签到,获得积分10
3秒前
4秒前
所所应助TK采纳,获得10
4秒前
半夏完成签到,获得积分10
4秒前
5秒前
pangpang完成签到,获得积分10
5秒前
11发布了新的文献求助10
6秒前
冷静白亦发布了新的文献求助10
6秒前
任性映秋发布了新的文献求助10
7秒前
10秒前
hbhsjk完成签到,获得积分10
10秒前
123发布了新的文献求助10
14秒前
16秒前
三分发布了新的文献求助10
17秒前
丘比特应助弯弯的朴采纳,获得10
17秒前
18秒前
殷青完成签到,获得积分10
18秒前
希望天下0贩的0应助嘻嘻采纳,获得10
21秒前
微笑的忆枫完成签到 ,获得积分10
22秒前
幽默阑悦发布了新的文献求助10
23秒前
23秒前
wanci应助123采纳,获得10
23秒前
小蘑菇应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
yqing应助科研通管家采纳,获得30
23秒前
Koalas应助科研通管家采纳,获得10
24秒前
思源应助科研通管家采纳,获得10
24秒前
英俊的铭应助科研通管家采纳,获得30
24秒前
严逍遥应助科研通管家采纳,获得10
24秒前
领导范儿应助科研通管家采纳,获得10
24秒前
浮游应助科研通管家采纳,获得10
24秒前
英姑应助科研通管家采纳,获得10
24秒前
酷波er应助科研通管家采纳,获得10
24秒前
帅哥吴克发布了新的文献求助10
24秒前
共享精神应助科研通管家采纳,获得10
24秒前
小杭76应助科研通管家采纳,获得10
24秒前
浮游应助科研通管家采纳,获得10
25秒前
orixero应助科研通管家采纳,获得10
25秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208817
求助须知:如何正确求助?哪些是违规求助? 4386099
关于积分的说明 13660012
捐赠科研通 4245182
什么是DOI,文献DOI怎么找? 2329154
邀请新用户注册赠送积分活动 1326960
关于科研通互助平台的介绍 1279228