Analyzing User Reviews on Digital Detox Apps: A Text Mining and Sentiment Analysis Approach

情绪分析 计算机科学 万维网 数据科学 情报检索 心理学 互联网隐私 自然语言处理
作者
Nazar Fatima Khan,Mohammed Naved Khan
出处
期刊:Journal of Consumer Behaviour [Wiley]
标识
DOI:10.1002/cb.2424
摘要

ABSTRACT Due to the growing concerns around problematic smartphone use and its negative impact, there is a rising interest in digital detox. While many digital detox apps have been developed in recent years, there is still limited understanding of the long‐term effectiveness of digital detox applications and the attitude of people towards these apps. This study fills this gap by identifying the topics that people post in their reviews on the Google Play Store about digital detox apps and the emotion‐based sentiment of those reviews. A total of 3500 reviews of 25 digital detox apps were collected from the Google Play Store using a scraping tool called “Parsehub.” Data was analyzed using R studio. Sentiment analysis results suggest that positive sentiments dominated the data frame. “Trust” and “anticipation” were the two most expressed emotions in the reviews. Regression analysis confirmed that sentiment scores could explain the ratings of the apps. Through LDA topic modeling four major topics of the reviews were identified and are discussed in detail in the later section of the research paper. The findings of this study may help app developers and marketers improve digital detox apps so that people can learn and practice mindful smartphone use with the help of these apps. This study fills a gap in digital detox research by adopting a new methodological approach and procedure since it combines text mining, sentiment analysis (NRC Lexicon using Syuzhet package), regression analysis, and LDA topic modeling. To the best of our knowledge, this is the first study which uses this research approach in the context of digital detox apps.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
酷炫若魔发布了新的文献求助10
1秒前
ax完成签到,获得积分10
1秒前
软软萌萌发布了新的文献求助10
1秒前
1秒前
SciGPT应助善良梦竹采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
柯不正完成签到,获得积分20
2秒前
凌凌嘻应助DrNaz采纳,获得10
3秒前
XIAOJU_U完成签到 ,获得积分10
3秒前
酷炫河马关注了科研通微信公众号
4秒前
结实老四发布了新的文献求助10
4秒前
年轻羿发布了新的文献求助10
4秒前
yw完成签到,获得积分20
4秒前
5秒前
5秒前
柯不正发布了新的文献求助10
5秒前
HongMou发布了新的文献求助10
6秒前
小蘑菇应助jdndbd采纳,获得10
6秒前
luca完成签到,获得积分10
8秒前
小米完成签到,获得积分10
8秒前
套个猴子完成签到,获得积分20
8秒前
obsession发布了新的文献求助20
8秒前
何双发布了新的文献求助10
9秒前
方文杰发布了新的文献求助10
9秒前
几酌发布了新的文献求助10
9秒前
机灵水卉发布了新的文献求助10
10秒前
ven完成签到,获得积分10
10秒前
科研通AI6.1应助小马采纳,获得10
11秒前
BowieHuang应助loveme采纳,获得10
11秒前
BowieHuang应助loveme采纳,获得10
11秒前
宋子琛完成签到,获得积分10
12秒前
WJ完成签到,获得积分10
12秒前
ding应助成就的咖啡采纳,获得10
12秒前
LERROR发布了新的文献求助10
13秒前
烟花应助小蟹采纳,获得10
14秒前
小二郎应助舒适尔容采纳,获得10
14秒前
14秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776350
求助须知:如何正确求助?哪些是违规求助? 5628713
关于积分的说明 15442059
捐赠科研通 4908468
什么是DOI,文献DOI怎么找? 2641217
邀请新用户注册赠送积分活动 1589167
关于科研通互助平台的介绍 1543851