Automatic Apple Detection and Counting with AD-YOLO and MR-SORT

分类 计算机科学 人工智能 计算机视觉 情报检索
作者
Xueliang Yang,Yapeng Gao,Mengyu Yin,Haifang Li
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:24 (21): 7012-7012
标识
DOI:10.3390/s24217012
摘要

In the production management of agriculture, accurate fruit counting plays a vital role in the orchard yield estimation and appropriate production decisions. Although recent tracking-by-detection algorithms have emerged as a promising fruit-counting method, they still cannot completely avoid fruit occlusion and light variations in complex orchard environments, and it is difficult to realize automatic and accurate apple counting. In this paper, a video-based multiple-object tracking method, MR-SORT (Multiple Rematching SORT), is proposed based on the improved YOLOv8 and BoT-SORT. First, we propose the AD-YOLO model, which aims to reduce the number of incorrect detections during object tracking. In the YOLOv8s backbone network, an Omni-dimensional Dynamic Convolution (ODConv) module is used to extract local feature information and enhance the model's ability better; a Global Attention Mechanism (GAM) is introduced to improve the detection ability of a foreground object (apple) in the whole image; a Soft Spatial Pyramid Pooling Layer (SSPPL) is designed to reduce the feature information dispersion and increase the sensory field of the network. Then, the improved BoT-SORT algorithm is proposed by fusing the verification mechanism, SURF feature descriptors, and the Vector of Local Aggregate Descriptors (VLAD) algorithm, which can match apples more accurately in adjacent video frames and reduce the probability of ID switching in the tracking process. The results show that the mAP metrics of the proposed AD-YOLO model are 3.1% higher than those of the YOLOv8 model, reaching 96.4%. The improved tracking algorithm has 297 fewer ID switches, which is 35.6% less than the original algorithm. The multiple-object tracking accuracy of the improved algorithm reached 85.6%, and the average counting error was reduced to 0.07. The coefficient of determination R2 between the ground truth and the predicted value reached 0.98. The above metrics show that our method can give more accurate counting results for apples and even other types of fruit.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
研友_VZG7GZ应助Edward采纳,获得10
1秒前
xiaochaoge完成签到,获得积分20
2秒前
小皮皮她爹完成签到,获得积分20
3秒前
杜杜完成签到,获得积分10
3秒前
纯真小伙发布了新的文献求助10
3秒前
淳于惜雪完成签到 ,获得积分10
3秒前
May发布了新的文献求助10
4秒前
4秒前
杨明智完成签到 ,获得积分10
5秒前
Doctor发布了新的文献求助10
6秒前
7秒前
8秒前
朴实以松完成签到,获得积分10
8秒前
DJL发布了新的文献求助10
10秒前
Jeamren完成签到,获得积分10
10秒前
11秒前
研友_ZlPVzZ发布了新的文献求助10
11秒前
情怀应助小城故事和冰雨采纳,获得10
13秒前
鱿鱼炒黄瓜完成签到,获得积分20
13秒前
卡卡光波完成签到,获得积分10
16秒前
纯真小伙发布了新的文献求助10
16秒前
ralph_liu完成签到,获得积分10
17秒前
wddytc发布了新的文献求助30
17秒前
19秒前
20秒前
高挑的果汁完成签到,获得积分10
23秒前
24秒前
24秒前
24秒前
郭郭郭完成签到,获得积分10
25秒前
wutianbao完成签到,获得积分20
26秒前
刘轶阳完成签到,获得积分20
27秒前
28秒前
May发布了新的文献求助10
28秒前
left_right完成签到,获得积分10
28秒前
奶糖爱果冻完成签到 ,获得积分10
29秒前
29秒前
科研通AI5应助shanyuyulai采纳,获得50
29秒前
HKH_whut发布了新的文献求助10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5024110
求助须知:如何正确求助?哪些是违规求助? 4261278
关于积分的说明 13281028
捐赠科研通 4068104
什么是DOI,文献DOI怎么找? 2225210
邀请新用户注册赠送积分活动 1233946
关于科研通互助平台的介绍 1157899