亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic Apple Detection and Counting with AD-YOLO and MR-SORT

分类 计算机科学 人工智能 计算机视觉 情报检索
作者
Xueliang Yang,Yapeng Gao,Mengyu Yin,Haifang Li
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:24 (21): 7012-7012
标识
DOI:10.3390/s24217012
摘要

In the production management of agriculture, accurate fruit counting plays a vital role in the orchard yield estimation and appropriate production decisions. Although recent tracking-by-detection algorithms have emerged as a promising fruit-counting method, they still cannot completely avoid fruit occlusion and light variations in complex orchard environments, and it is difficult to realize automatic and accurate apple counting. In this paper, a video-based multiple-object tracking method, MR-SORT (Multiple Rematching SORT), is proposed based on the improved YOLOv8 and BoT-SORT. First, we propose the AD-YOLO model, which aims to reduce the number of incorrect detections during object tracking. In the YOLOv8s backbone network, an Omni-dimensional Dynamic Convolution (ODConv) module is used to extract local feature information and enhance the model's ability better; a Global Attention Mechanism (GAM) is introduced to improve the detection ability of a foreground object (apple) in the whole image; a Soft Spatial Pyramid Pooling Layer (SSPPL) is designed to reduce the feature information dispersion and increase the sensory field of the network. Then, the improved BoT-SORT algorithm is proposed by fusing the verification mechanism, SURF feature descriptors, and the Vector of Local Aggregate Descriptors (VLAD) algorithm, which can match apples more accurately in adjacent video frames and reduce the probability of ID switching in the tracking process. The results show that the mAP metrics of the proposed AD-YOLO model are 3.1% higher than those of the YOLOv8 model, reaching 96.4%. The improved tracking algorithm has 297 fewer ID switches, which is 35.6% less than the original algorithm. The multiple-object tracking accuracy of the improved algorithm reached 85.6%, and the average counting error was reduced to 0.07. The coefficient of determination R2 between the ground truth and the predicted value reached 0.98. The above metrics show that our method can give more accurate counting results for apples and even other types of fruit.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
njxray完成签到 ,获得积分10
6秒前
zmmm发布了新的文献求助10
13秒前
zmmm完成签到,获得积分10
19秒前
21秒前
千山暮雪发布了新的文献求助30
26秒前
28秒前
30秒前
jn完成签到,获得积分10
30秒前
38秒前
千山暮雪完成签到,获得积分10
43秒前
灵巧大地完成签到,获得积分10
44秒前
隐形曼青应助科研通管家采纳,获得10
51秒前
moiumuio完成签到,获得积分10
1分钟前
9239完成签到 ,获得积分10
1分钟前
SciGPT应助小鹿采纳,获得10
1分钟前
1分钟前
1分钟前
认真映真发布了新的文献求助10
1分钟前
葉鳳怡完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
张张完成签到 ,获得积分10
2分钟前
认真映真完成签到,获得积分10
2分钟前
2分钟前
令宏发布了新的文献求助30
2分钟前
2分钟前
2分钟前
昌莆完成签到 ,获得积分10
3分钟前
2220完成签到 ,获得积分10
3分钟前
科研通AI5应助令宏采纳,获得30
3分钟前
江上游完成签到 ,获得积分10
3分钟前
3分钟前
小二郎应助傲娇的冷霜采纳,获得20
3分钟前
3分钟前
FashionBoy应助西瓜二郎采纳,获得30
3分钟前
赘婿应助傲娇的冷霜采纳,获得30
3分钟前
3分钟前
昔年若许完成签到,获得积分10
3分钟前
西瓜二郎发布了新的文献求助30
3分钟前
3分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965659
求助须知:如何正确求助?哪些是违规求助? 3510902
关于积分的说明 11155538
捐赠科研通 3245353
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874161
科研通“疑难数据库(出版商)”最低求助积分说明 804214