已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automatic Apple Detection and Counting with AD-YOLO and MR-SORT

分类 计算机科学 人工智能 计算机视觉 情报检索
作者
Xueliang Yang,Yapeng Gao,Mengyu Yin,Haifang Li
出处
期刊:Sensors [MDPI AG]
卷期号:24 (21): 7012-7012
标识
DOI:10.3390/s24217012
摘要

In the production management of agriculture, accurate fruit counting plays a vital role in the orchard yield estimation and appropriate production decisions. Although recent tracking-by-detection algorithms have emerged as a promising fruit-counting method, they still cannot completely avoid fruit occlusion and light variations in complex orchard environments, and it is difficult to realize automatic and accurate apple counting. In this paper, a video-based multiple-object tracking method, MR-SORT (Multiple Rematching SORT), is proposed based on the improved YOLOv8 and BoT-SORT. First, we propose the AD-YOLO model, which aims to reduce the number of incorrect detections during object tracking. In the YOLOv8s backbone network, an Omni-dimensional Dynamic Convolution (ODConv) module is used to extract local feature information and enhance the model's ability better; a Global Attention Mechanism (GAM) is introduced to improve the detection ability of a foreground object (apple) in the whole image; a Soft Spatial Pyramid Pooling Layer (SSPPL) is designed to reduce the feature information dispersion and increase the sensory field of the network. Then, the improved BoT-SORT algorithm is proposed by fusing the verification mechanism, SURF feature descriptors, and the Vector of Local Aggregate Descriptors (VLAD) algorithm, which can match apples more accurately in adjacent video frames and reduce the probability of ID switching in the tracking process. The results show that the mAP metrics of the proposed AD-YOLO model are 3.1% higher than those of the YOLOv8 model, reaching 96.4%. The improved tracking algorithm has 297 fewer ID switches, which is 35.6% less than the original algorithm. The multiple-object tracking accuracy of the improved algorithm reached 85.6%, and the average counting error was reduced to 0.07. The coefficient of determination R2 between the ground truth and the predicted value reached 0.98. The above metrics show that our method can give more accurate counting results for apples and even other types of fruit.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3080完成签到 ,获得积分10
2秒前
乐乐关注了科研通微信公众号
2秒前
3秒前
王大炮完成签到 ,获得积分10
4秒前
小七完成签到 ,获得积分10
5秒前
6秒前
尛瞐慶成发布了新的文献求助10
8秒前
10秒前
结实的蘑菇完成签到 ,获得积分10
11秒前
爱静静应助DJJ采纳,获得10
12秒前
番茄吐司发布了新的文献求助10
13秒前
尛瞐慶成完成签到,获得积分10
16秒前
wwmmyy完成签到 ,获得积分10
16秒前
17秒前
Marvin完成签到,获得积分10
18秒前
山岛风行完成签到,获得积分20
22秒前
22秒前
小白完成签到,获得积分10
23秒前
番茄吐司完成签到,获得积分10
23秒前
小罗发布了新的文献求助10
23秒前
Odile完成签到 ,获得积分10
26秒前
26秒前
27秒前
olofmeister完成签到 ,获得积分10
29秒前
乐乐发布了新的文献求助10
31秒前
Xxi完成签到,获得积分10
32秒前
外向如冬完成签到 ,获得积分10
34秒前
千寻发布了新的文献求助10
35秒前
萨阿呢发布了新的文献求助10
36秒前
端庄大白完成签到 ,获得积分10
36秒前
38秒前
40秒前
42秒前
科研通AI2S应助科研通管家采纳,获得10
42秒前
科研通AI2S应助科研通管家采纳,获得10
42秒前
陈补天完成签到,获得积分10
44秒前
orixero应助秋子采纳,获得10
45秒前
科研兵发布了新的文献求助10
46秒前
招水若离完成签到,获得积分10
47秒前
科研通AI2S应助Joely采纳,获得10
48秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3179774
求助须知:如何正确求助?哪些是违规求助? 2830272
关于积分的说明 7976073
捐赠科研通 2491754
什么是DOI,文献DOI怎么找? 1328872
科研通“疑难数据库(出版商)”最低求助积分说明 635561
版权声明 602927