Metal-organic frameworks have gained traction as leading materials for water sorption applications due to precise chemical tunability of their well-ordered pores. These applications include atmospheric water capture, heat pumps, desiccation, desalination, humidity control, and thermal batteries. However, the relationships between the framework pore structure and the measurable water sorption properties, namely critical relative humidity for condensation, maximal capacity, and pore size or temperature for the onset of hysteresis, have not been clearly delineated. Herein, we precisely formulate these relationships by application of the theory of capillary condensation and macroscopic thermodynamic models to a large data set of MOF water isotherms. These relationships include a concept termed