凝聚态物理
铁磁性
磁电阻
金属
自旋(空气动力学)
材料科学
巨磁阻
霍尔效应
自旋霍尔效应
自旋极化
物理
磁场
冶金
量子力学
电子
热力学
作者
Qikun Huang,Xiaotian Cui,Shun Wang,Ronghuan Xie,Lihui Bai,Yufeng Tian,Qiang Cao,Shishen Yan
出处
期刊:Applied physics reviews
[American Institute of Physics]
日期:2024-07-22
卷期号:11 (3)
摘要
Nonreciprocal magnetotransport is one of the central topics in spintronics because of its importance for electrically probing magnetic information. Among numerous electrical probes used to read magnetic orders, unidirectional magnetoresistance (UMR), characterized by sign changes upon reversal of either current or magnetization, is currently a matter of great interest and has been identified in various spin–orbit-coupled bilayer systems composed of an (anti)ferromagnetic layer and a nonmagnetic layer with strong spin Hall effect. A recent theoretical work predicts that a spin-anomalous-Hall (SAH) UMR in those metallic conducting bilayers can originate from the spin-anomalous-Hall effect of the ferromagnetic layer and the structural inversion asymmetry. However, this type of UMR has not been reported experimentally. Here, we give the experimental evidence of spin-anomalous-Hall UMR in the light-metal/ferromagnetic-metal Cu/Co bilayers, where the emergence of net nonequilibrium spin density is attributed to the interfacial spin leakage asymmetry due to the spin memory loss effect at the Cu/Co interface and multiple spin reflections. We also show a highly tunable UMR in the Cu/Co/CuOx trilayer by varying the Cu thickness, which is due to the competition between the orbital Rashba effect in Co/CuOx and the spin-anomalous-Hall effect in Cu/Co. Our work widens the material choice for UMR device applications and provides an alternative approach to detect in-plane magnetization without an external spin polarizer.
科研通智能强力驱动
Strongly Powered by AbleSci AI