A Creep Model of Steel Slag–Asphalt Mixture Based on Neural Networks

蠕动 沥青 车辙 人工神经网络 超参数 材料科学 结构工程 计算机科学 人工智能 冶金 复合材料 工程类
作者
Bei Deng Bei Deng,Guowei Zeng,Rui Ge
出处
期刊:Applied sciences [MDPI AG]
卷期号:14 (13): 5820-5820
标识
DOI:10.3390/app14135820
摘要

To characterize the complex creep behavior of steel slag–asphalt mixture influenced by both stress and temperature, predictive models employing Back Propagation (BP) and Long Short-Term Memory (LSTM) neural networks are described and compared in this paper. Multiple stress repeated creep recovery tests on AC-13 grade steel slag–asphalt mix samples were conducted at different temperatures. The experimental results were processed into a group of independent creep recovery test results, then divided into training and testing datasets. The K-fold cross-validation was applied to the training datasets to fine-tune the hyperparameters of the neural networks effectively. Compared with the experimental curves, both the effects of BP and LSTM models were investigated, and the broad applicability of the models was proven. The performance of the trained LSTM model was observed by a 95% confidence interval around the fit errors, thereby the creep strain intervals for the testing dataset were obtained. The results suggest that the LSTM model had enhanced prediction compared the BP model for creep deformation trends of steel slag–asphalt mixture at various temperatures. Due to the potent generalization strength of artificial intelligence technology, the LSTM model can be further expanded for forecasting road rutting deformations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
情怀应助柯白梦采纳,获得10
刚刚
zy完成签到,获得积分10
刚刚
刚刚
超级王国发布了新的文献求助10
1秒前
1秒前
等待芷发布了新的文献求助10
1秒前
1秒前
迷路的鞅发布了新的文献求助10
1秒前
1秒前
2秒前
momo完成签到,获得积分10
2秒前
真开心发布了新的文献求助10
2秒前
6161发布了新的文献求助10
3秒前
3秒前
英姑应助抗氧剂采纳,获得10
3秒前
小稻草人发布了新的文献求助10
3秒前
球球完成签到,获得积分10
3秒前
4秒前
完美世界应助临界采纳,获得10
4秒前
4秒前
wowow发布了新的文献求助10
5秒前
5秒前
5秒前
领导范儿应助第一个相遇采纳,获得10
6秒前
Katze发布了新的文献求助20
6秒前
桃桃发布了新的文献求助10
6秒前
6秒前
不安向雁发布了新的文献求助10
6秒前
坦率寻雪完成签到,获得积分20
6秒前
无限的板栗完成签到 ,获得积分10
7秒前
LLY发布了新的文献求助10
7秒前
7秒前
黄云发布了新的文献求助10
7秒前
壮观溪流发布了新的文献求助10
7秒前
7秒前
KYDD完成签到,获得积分10
8秒前
lisi应助lzj采纳,获得10
9秒前
9秒前
wzx完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5552469
求助须知:如何正确求助?哪些是违规求助? 4637218
关于积分的说明 14648146
捐赠科研通 4579088
什么是DOI,文献DOI怎么找? 2511302
邀请新用户注册赠送积分活动 1486474
关于科研通互助平台的介绍 1457556