A Creep Model of Steel Slag–Asphalt Mixture Based on Neural Networks

蠕动 沥青 车辙 人工神经网络 超参数 材料科学 结构工程 计算机科学 人工智能 冶金 复合材料 工程类
作者
Bei Deng Bei Deng,Guowei Zeng,Rui Ge
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:14 (13): 5820-5820
标识
DOI:10.3390/app14135820
摘要

To characterize the complex creep behavior of steel slag–asphalt mixture influenced by both stress and temperature, predictive models employing Back Propagation (BP) and Long Short-Term Memory (LSTM) neural networks are described and compared in this paper. Multiple stress repeated creep recovery tests on AC-13 grade steel slag–asphalt mix samples were conducted at different temperatures. The experimental results were processed into a group of independent creep recovery test results, then divided into training and testing datasets. The K-fold cross-validation was applied to the training datasets to fine-tune the hyperparameters of the neural networks effectively. Compared with the experimental curves, both the effects of BP and LSTM models were investigated, and the broad applicability of the models was proven. The performance of the trained LSTM model was observed by a 95% confidence interval around the fit errors, thereby the creep strain intervals for the testing dataset were obtained. The results suggest that the LSTM model had enhanced prediction compared the BP model for creep deformation trends of steel slag–asphalt mixture at various temperatures. Due to the potent generalization strength of artificial intelligence technology, the LSTM model can be further expanded for forecasting road rutting deformations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyyyou发布了新的文献求助10
刚刚
猪猪hero发布了新的文献求助10
刚刚
刚刚
Yulei_Qian发布了新的文献求助10
刚刚
王羲之完成签到,获得积分10
刚刚
刚刚
落寞慕晴发布了新的文献求助10
1秒前
ZS完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
alice完成签到,获得积分10
2秒前
老街完成签到,获得积分20
2秒前
smiling完成签到 ,获得积分10
2秒前
子菱完成签到,获得积分10
3秒前
仙魔洞发布了新的文献求助10
3秒前
隐形曼青应助怕黑的亦瑶采纳,获得10
5秒前
5秒前
weiwei发布了新的文献求助30
5秒前
5秒前
qaa2274278941发布了新的文献求助10
6秒前
7秒前
顾天理发布了新的文献求助10
7秒前
7秒前
无算浮白完成签到,获得积分10
7秒前
DZ发布了新的文献求助10
7秒前
开心的紫烟完成签到,获得积分10
8秒前
roxy完成签到,获得积分10
9秒前
落寞慕晴完成签到,获得积分10
9秒前
JamesPei应助imi采纳,获得10
10秒前
10秒前
11秒前
hubery发布了新的文献求助10
12秒前
科研通AI2S应助仙魔洞采纳,获得10
12秒前
12秒前
12秒前
隐形曼青应助nanyang采纳,获得10
13秒前
汉堡包应助CF采纳,获得10
13秒前
机灵道罡完成签到,获得积分10
13秒前
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974712
求助须知:如何正确求助?哪些是违规求助? 3519159
关于积分的说明 11197254
捐赠科研通 3255257
什么是DOI,文献DOI怎么找? 1797724
邀请新用户注册赠送积分活动 877130
科研通“疑难数据库(出版商)”最低求助积分说明 806132