蠕动
沥青
车辙
人工神经网络
超参数
材料科学
结构工程
计算机科学
人工智能
冶金
复合材料
工程类
作者
Bei Deng Bei Deng,Guowei Zeng,Rui Ge
摘要
To characterize the complex creep behavior of steel slag–asphalt mixture influenced by both stress and temperature, predictive models employing Back Propagation (BP) and Long Short-Term Memory (LSTM) neural networks are described and compared in this paper. Multiple stress repeated creep recovery tests on AC-13 grade steel slag–asphalt mix samples were conducted at different temperatures. The experimental results were processed into a group of independent creep recovery test results, then divided into training and testing datasets. The K-fold cross-validation was applied to the training datasets to fine-tune the hyperparameters of the neural networks effectively. Compared with the experimental curves, both the effects of BP and LSTM models were investigated, and the broad applicability of the models was proven. The performance of the trained LSTM model was observed by a 95% confidence interval around the fit errors, thereby the creep strain intervals for the testing dataset were obtained. The results suggest that the LSTM model had enhanced prediction compared the BP model for creep deformation trends of steel slag–asphalt mixture at various temperatures. Due to the potent generalization strength of artificial intelligence technology, the LSTM model can be further expanded for forecasting road rutting deformations.
科研通智能强力驱动
Strongly Powered by AbleSci AI