摩擦电效应
纳米发生器
光催化
材料科学
纳米技术
空气净化
光电子学
复合材料
催化作用
机械工程
有机化学
化学
压电
工程类
作者
Xiaoliang Li,Leo N.Y. Cao,Ting Zhang,Rongkun Fang,Yuqing Ren,Xiangyu Chen,Zhenfeng Bian,Hexing Li
出处
期刊:Nano Energy
[Elsevier]
日期:2024-07-01
卷期号:: 109965-109965
被引量:1
标识
DOI:10.1016/j.nanoen.2024.109965
摘要
Increasing the collision frequency between gas molecules and photocatalysts can enhance the removal efficiency of volatile organic compounds (VOCs) and particulate matter (PM) in air. In this study, we propose an Electrostatic-Photocatalytic air purification system, containing Tesla valve, triboelectric nanogenerator (TENG), and photocatalysis parts. The incorporation of Ag@ZnO nanorod array (Ag@ZnO-NR) photocatalysts into the internal baffles of the Tesla valve pipeline effectively enhances the collision probability between air pollutant molecules and photocatalysts, and thus facilitating the removal efficiency of pollutants. Additionally, the high-voltage electricity (~9.0 kV) generated by the TENG facilitates the separation of electron-hole pairs in the photocatalyst, leading to increased production of superoxide radicals (O•-2), hydroxyl radicals (•OH), and holes (h+), thereby enhancing the photocatalytic efficiency. In a 1.8 L space system, we achieved an approximately 97% removal efficiency for toluene within 130 minutes and a similar efficiency for formaldehyde (~200 ppm) within 175 minutes. Additionally, the PM2.5 concentration rapidly decreased from 999 μg·m-3 to 42 μg·m-3 within 6 minutes, alongside with a significantly faster pollutant removal rate compared to conventional methods. By integrating Tesla valves, TENG, and photocatalysis, this combined system presents an efficient and promising approach for addressing indoor air pollution, with potential applications across various settings.
科研通智能强力驱动
Strongly Powered by AbleSci AI