Optimizing Photocatalytic Performance in an Electrostatic-Photocatalytic Air Purification System through Integration of Triboelectric Nanogenerator and Tesla Valve

摩擦电效应 纳米发生器 光催化 材料科学 纳米技术 空气净化 光电子学 复合材料 催化作用 机械工程 有机化学 压电 工程类 化学
作者
Xiaoliang Li,Leo N.Y. Cao,Ting Zhang,Rongkun Fang,Yuqing Ren,Xiangyu Chen,Zhenfeng Bian,Hexing Li
出处
期刊:Nano Energy [Elsevier]
卷期号:: 109965-109965 被引量:1
标识
DOI:10.1016/j.nanoen.2024.109965
摘要

Increasing the collision frequency between gas molecules and photocatalysts can enhance the removal efficiency of volatile organic compounds (VOCs) and particulate matter (PM) in air. In this study, we propose an Electrostatic-Photocatalytic air purification system, containing Tesla valve, triboelectric nanogenerator (TENG), and photocatalysis parts. The incorporation of Ag@ZnO nanorod array (Ag@ZnO-NR) photocatalysts into the internal baffles of the Tesla valve pipeline effectively enhances the collision probability between air pollutant molecules and photocatalysts, and thus facilitating the removal efficiency of pollutants. Additionally, the high-voltage electricity (~9.0 kV) generated by the TENG facilitates the separation of electron-hole pairs in the photocatalyst, leading to increased production of superoxide radicals (O•-2), hydroxyl radicals (•OH), and holes (h+), thereby enhancing the photocatalytic efficiency. In a 1.8 L space system, we achieved an approximately 97% removal efficiency for toluene within 130 minutes and a similar efficiency for formaldehyde (~200 ppm) within 175 minutes. Additionally, the PM2.5 concentration rapidly decreased from 999 μg·m-3 to 42 μg·m-3 within 6 minutes, alongside with a significantly faster pollutant removal rate compared to conventional methods. By integrating Tesla valves, TENG, and photocatalysis, this combined system presents an efficient and promising approach for addressing indoor air pollution, with potential applications across various settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Possession发布了新的文献求助10
3秒前
传奇3应助baijiangtao采纳,获得10
3秒前
5秒前
高高的山兰完成签到 ,获得积分10
5秒前
桐桐应助小苏采纳,获得10
6秒前
李健应助范米粒采纳,获得10
7秒前
7秒前
7秒前
彩色的沛白完成签到,获得积分10
7秒前
CodeCraft应助零城XL采纳,获得10
10秒前
aYXZ321发布了新的文献求助10
10秒前
大个应助Possession采纳,获得10
13秒前
fhbsdufh完成签到,获得积分10
13秒前
深情安青应助Nell采纳,获得10
14秒前
科研通AI2S应助花影移采纳,获得10
15秒前
16秒前
baijiangtao完成签到,获得积分10
18秒前
18秒前
18秒前
阿蛋发布了新的文献求助10
19秒前
20秒前
yue完成签到 ,获得积分10
21秒前
21秒前
包容雪巧发布了新的文献求助10
21秒前
小吴同志完成签到,获得积分10
23秒前
24秒前
小杨完成签到,获得积分10
24秒前
24秒前
零城XL发布了新的文献求助10
25秒前
烂漫映之完成签到 ,获得积分10
26秒前
yyy发布了新的文献求助10
26秒前
雅3165完成签到 ,获得积分20
26秒前
QIQI发布了新的文献求助10
27秒前
桐桐应助潇洒采纳,获得10
27秒前
标致无血完成签到 ,获得积分10
28秒前
Ye完成签到,获得积分10
29秒前
英勇凝旋完成签到 ,获得积分10
29秒前
29秒前
小破网完成签到 ,获得积分0
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565449
求助须知:如何正确求助?哪些是违规求助? 4650499
关于积分的说明 14691551
捐赠科研通 4592435
什么是DOI,文献DOI怎么找? 2519635
邀请新用户注册赠送积分活动 1492011
关于科研通互助平台的介绍 1463232