Three-dimensional simulations of two-phase plug flow in a microfluidic channel

物理 两相流 微流控 明渠流量 机械 流量(数学) 频道(广播) 火花塞 统计物理学 分层流 热力学 湍流 电气工程 工程类
作者
Santhosh Virappane,Reza Azadi,Neelarun Mukherjee,Peichun Amy Tsai
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (10)
标识
DOI:10.1063/5.0220101
摘要

A fundamental understanding of two-phase flow behavior in microfluidics is crucial for various technological applications across different disciplines, including energy, chemical, and material engineering, as well as biomedical, environmental, and pharmaceutical sciences. In this work, we elucidate the flow fields of low Capillary number [Ca ∼O(10−3)] segmented Taylor flows of immiscible CO2 emulsions/bubbles transported by water in a low aspect ratio microchannel. We conducted high-resolution two- and three-dimensional (2D and 3D) numerical simulations using an improved volume-of-fluid two-phase flow solver and validated their accuracy against experimental data. Our results show that 3D simulations are necessary to accurately capture the dynamics of liquid and supercritical CO2 emulsions produced at relatively higher Ca. The 3D simulation results also reveal diverse patterns of spanwise vortices, which are overlooked in 2D simulations. Calculating the Q-criterion in 3D revealed that vortices with relatively higher vorticity magnitudes are adjacent to the sidewalls, with the strongest ones emerging across the microchannel in the third dimension. More specifically, gaseous CO2 bubbles display relatively intense vortex patterns near the interfacial region of the bubble body and the cap due to the influence of the surrounding thin liquid film and slug flow. At higher Ca, liquid and supercritical CO2 emulsions exhibit similar flow dynamics, however, with prominent vortex patterns occurring in the upstream cap region. These findings pinpoint specific areas within the emulsions/bubbles that require attention to enhance stabilization or exchanging mechanisms for low-Ca Taylor flow of emulsions/bubbles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
枯叶蝶发布了新的文献求助10
刚刚
1秒前
1秒前
blueice发布了新的文献求助10
1秒前
1秒前
alpv发布了新的文献求助10
2秒前
今后应助张钰婷啦啦啦采纳,获得10
3秒前
4秒前
干净初彤发布了新的文献求助50
4秒前
有魅力思远完成签到,获得积分10
4秒前
科研通AI5应助不安的未来采纳,获得10
4秒前
王秋婷发布了新的文献求助10
5秒前
EH完成签到,获得积分10
5秒前
消消乐发布了新的文献求助10
5秒前
7秒前
乐乐应助康康XY采纳,获得10
8秒前
华仔完成签到,获得积分10
8秒前
8秒前
8秒前
寒食应助想做哥哥的伞钯采纳,获得10
8秒前
9秒前
晓舟发布了新的文献求助10
9秒前
一介书生发布了新的文献求助10
9秒前
赘婿应助浮浮采纳,获得10
11秒前
香蕉觅云应助CJ采纳,获得10
12秒前
万能图书馆应助燕子采纳,获得10
12秒前
dawn完成签到 ,获得积分10
12秒前
12秒前
小欣还能继续写完成签到,获得积分10
12秒前
汉堡包应助康康采纳,获得10
12秒前
13秒前
13秒前
Akim应助默默的猎豹采纳,获得10
13秒前
13秒前
kinger发布了新的文献求助10
13秒前
猪猪hero发布了新的文献求助10
13秒前
liuhao发布了新的文献求助10
13秒前
14秒前
14秒前
陈咬金发布了新的文献求助10
14秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3488637
求助须知:如何正确求助?哪些是违规求助? 3076232
关于积分的说明 9144270
捐赠科研通 2768577
什么是DOI,文献DOI怎么找? 1519188
邀请新用户注册赠送积分活动 703703
科研通“疑难数据库(出版商)”最低求助积分说明 701952