Synergistic engineering of heterojunction and surface coating to boost Zn storage performance of V2O3-based microspheres as an advanced cathode for aqueous zinc-ion batteries

材料科学 涂层 化学工程 异质结 阴极 表面工程 水溶液 电解质 X射线光电子能谱 纳米技术 电极 化学 光电子学 物理化学 工程类
作者
Yangjie Li,Xiangyue Liao,Xiaoying Li,Qiaoji Zheng,Yu Huo,Fengyu Xie,Dunmin Lin
出处
期刊:Journal of Alloys and Compounds [Elsevier BV]
卷期号:1004: 175867-175867
标识
DOI:10.1016/j.jallcom.2024.175867
摘要

Vanadium-based compounds are highly regarded as potential cathodes for aqueous zinc-ion batteries (AZIBs) owing to the high theoretical capacity, diverse structural frameworks and abundant oxidation states. Nevertheless, the challenges such as slow diffusion kinetics, low electrical conductivity and inadequate structural stability restrict their further development. Herein, yolk shell-like SiO2-coated V2O3/VN heterojunction microspheres (VON@SiO2) are synthesized through a hydrothermal method followed by annealing and subsequent SiO2 coating. As an advanced cathode for AZIBs, the construction of V2O3/VN heterojunction effectively exposes reactive sites, leads to the reduction in interfacial charge transfer resistance, and thus improves the ion diffusion kinetics, while the surface coating of SiO2 is beneficial for enhancing the structural stability of the material and further reduces the capacity fading. Additionally, the micromorphology of porous yolk shell-like microspheres self-assembled by nanoparticles contributes to the complete penetration of electrolyte and greatly exposing reactive sites. Based on synergistic engineering of heterojunction, surface coating and porous shell-like micromorphology, the synthesized VON@SiO2 delivers excellent specific capacities of 483.5 mAh g−1 at 0.5 A g−1 and 294 mAh g−1 at 10 A g−1, and exhibits impressive cycling performance with 94 % of capacity retention after 1000 cycles at 10 A g−1. Further, in-situ XRD and ex-situ XPS reveals the mechanism of zinc ion storage. This work offers a valuable reference into the development of high-performance cathode materials for AZIBs by co-engineering of heterojunction, surface coating and micromorphology optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等等完成签到,获得积分10
刚刚
海风奕婕完成签到,获得积分10
刚刚
三虎科研完成签到,获得积分10
刚刚
1秒前
zzz发布了新的文献求助10
1秒前
sunday2024完成签到,获得积分10
1秒前
sunaq发布了新的文献求助10
1秒前
六月完成签到,获得积分10
1秒前
Owen应助猴猴采纳,获得10
1秒前
2秒前
2秒前
China完成签到,获得积分10
2秒前
丘比特应助甜橙汁采纳,获得10
3秒前
冯尔蓝发布了新的文献求助10
3秒前
3秒前
马金利完成签到,获得积分10
4秒前
神山识完成签到,获得积分10
4秒前
123完成签到,获得积分10
5秒前
yier完成签到,获得积分10
5秒前
6秒前
Ava应助阿飞采纳,获得10
6秒前
万能图书馆应助研友_Zr5Dpn采纳,获得10
6秒前
的方法与地狱技术大会结束完成签到,获得积分10
6秒前
ZZDXXX发布了新的文献求助10
6秒前
伶俐绿柏发布了新的文献求助10
7秒前
科研小笨猪完成签到,获得积分10
7秒前
7秒前
lemon完成签到,获得积分10
7秒前
行止发布了新的文献求助10
7秒前
7秒前
8秒前
FIN应助ling采纳,获得10
8秒前
钟垠州应助ling采纳,获得10
8秒前
ding应助ling采纳,获得10
8秒前
慕青应助小羊驼采纳,获得10
8秒前
10秒前
zhaoshao完成签到,获得积分10
10秒前
10秒前
甜甜的莞完成签到,获得积分20
10秒前
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953854
求助须知:如何正确求助?哪些是违规求助? 3499843
关于积分的说明 11096972
捐赠科研通 3230263
什么是DOI,文献DOI怎么找? 1785901
邀请新用户注册赠送积分活动 869663
科研通“疑难数据库(出版商)”最低求助积分说明 801530