Blind Video Quality Prediction by Uncovering Human Video Perceptual Representation

计算机科学 人工智能 视频质量 计算机视觉 感知 质量(理念) 模式识别(心理学) 视频处理 代表(政治) 心理学 认识论 法学 公制(单位) 神经科学 经济 哲学 政治 运营管理 政治学
作者
Liang Liao,Kangmin Xu,Haoning Wu,Chaofeng Chen,Wenxiu Sun,Qiong Yan,C.‐C. Jay Kuo,Weisi Lin
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tip.2024.3445738
摘要

Blind video quality assessment (VQA) has become an increasingly demanding problem in automatically assessing the quality of ever-growing in-the-wild videos. Although efforts have been made to measure temporal distortions, the core to distinguish between VQA and image quality assessment (IQA), the lack of modeling of how the human visual system (HVS) relates to the temporal quality of videos hinders the precise mapping of predicted temporal scores to the human perception. Inspired by the recent discovery of the temporal straightness law of natural videos in the HVS, this paper intends to model the complex temporal distortions of in-the-wild videos in a simple and uniform representation by describing the geometric properties of videos in the visual perceptual domain. A novel videolet, with perceptual representation embedding of a few consecutive frames, is designed as the basic quality measurement unit to quantify temporal distortions by measuring the angular and linear displacements from the straightness law. By combining the predicted score on each videolet, a perceptually temporal quality evaluator (PTQE) is formed to measure the temporal quality of the entire video. Experimental results demonstrate that the perceptual representation in the HVS is an efficient way of predicting subjective temporal quality. Moreover, when combined with spatial quality metrics, PTQE achieves top performance over popular in-the-wild video datasets. More importantly, PTQE requires no additional information beyond the video being assessed, making it applicable to any dataset without parameter tuning. Additionally, the generalizability of PTQE is evaluated on video frame interpolation tasks, demonstrating its potential to benefit temporal-related enhancement tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
煎饼煎饼发布了新的文献求助10
1秒前
赫连烙完成签到,获得积分10
2秒前
2秒前
李爱国应助Aprilapple采纳,获得10
3秒前
3秒前
哈哈完成签到,获得积分10
3秒前
大模型应助Zn采纳,获得10
4秒前
谢言一发布了新的文献求助30
4秒前
4秒前
bbc完成签到,获得积分20
4秒前
科研通AI5应助hgy采纳,获得10
4秒前
吴念完成签到,获得积分20
6秒前
银子吃好的完成签到,获得积分10
6秒前
7秒前
Sept6发布了新的文献求助10
7秒前
JRZ完成签到,获得积分10
8秒前
gjq发布了新的文献求助10
9秒前
meihui完成签到 ,获得积分10
9秒前
小小元风完成签到,获得积分10
10秒前
高兴可乐发布了新的文献求助10
10秒前
10秒前
GPTea应助bbc采纳,获得30
11秒前
撒西不理发布了新的文献求助10
13秒前
annis完成签到,获得积分10
14秒前
上官若男应助默默的靳采纳,获得10
14秒前
16秒前
16秒前
16秒前
阿榛完成签到,获得积分10
17秒前
17秒前
世界和平完成签到 ,获得积分10
18秒前
19秒前
Ava应助科研通管家采纳,获得10
20秒前
华仔应助苏打水采纳,获得10
20秒前
不配.应助科研通管家采纳,获得50
20秒前
在水一方应助科研通管家采纳,获得10
20秒前
Akim应助科研通管家采纳,获得30
20秒前
小蘑菇应助科研通管家采纳,获得10
20秒前
阿榛发布了新的文献求助10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4908175
求助须知:如何正确求助?哪些是违规求助? 4184895
关于积分的说明 12995880
捐赠科研通 3951536
什么是DOI,文献DOI怎么找? 2167047
邀请新用户注册赠送积分活动 1185523
关于科研通互助平台的介绍 1092050