AEPF: Attention-Enabled Point Fusion for 3D Object Detection

点云 计算机科学 人工智能 目标检测 特征(语言学) 激光雷达 传感器融合 管道(软件) 集合(抽象数据类型) 特征提取 计算机视觉 数据集 探测器 模式识别(心理学) 数据挖掘 遥感 哲学 语言学 电信 程序设计语言 地质学
作者
Sachin Sharma,Richard Meyer,Zachary D. Asher
出处
期刊:Sensors [MDPI AG]
卷期号:24 (17): 5841-5841
标识
DOI:10.3390/s24175841
摘要

Current state-of-the-art (SOTA) LiDAR-only detectors perform well for 3D object detection tasks, but point cloud data are typically sparse and lacks semantic information. Detailed semantic information obtained from camera images can be added with existing LiDAR-based detectors to create a robust 3D detection pipeline. With two different data types, a major challenge in developing multi-modal sensor fusion networks is to achieve effective data fusion while managing computational resources. With separate 2D and 3D feature extraction backbones, feature fusion can become more challenging as these modes generate different gradients, leading to gradient conflicts and suboptimal convergence during network optimization. To this end, we propose a 3D object detection method, Attention-Enabled Point Fusion (AEPF). AEPF uses images and voxelized point cloud data as inputs and estimates the 3D bounding boxes of object locations as outputs. An attention mechanism is introduced to an existing feature fusion strategy to improve 3D detection accuracy and two variants are proposed. These two variants, AEPF-Small and AEPF-Large, address different needs. AEPF-Small, with a lightweight attention module and fewer parameters, offers fast inference. AEPF-Large, with a more complex attention module and increased parameters, provides higher accuracy than baseline models. Experimental results on the KITTI validation set show that AEPF-Small maintains SOTA 3D detection accuracy while inferencing at higher speeds. AEPF-Large achieves mean average precision scores of 91.13, 79.06, and 76.15 for the car class’s easy, medium, and hard targets, respectively, in the KITTI validation set. Results from ablation experiments are also presented to support the choice of model architecture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WZWMLF完成签到,获得积分10
刚刚
胖虎爱睡觉完成签到,获得积分10
刚刚
3秒前
3秒前
3秒前
tuotuo发布了新的文献求助10
4秒前
有机会吗发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
hnsun21发布了新的文献求助10
5秒前
YYA完成签到 ,获得积分10
6秒前
6秒前
顺利的冰旋完成签到 ,获得积分10
6秒前
6秒前
糖糖唐发布了新的文献求助10
6秒前
星辰大海应助嘟嘟嘟嘟采纳,获得10
6秒前
orixero应助Maomao采纳,获得10
7秒前
NexusExplorer应助SCI采纳,获得10
7秒前
8秒前
8秒前
李爱国应助靓丽雅彤采纳,获得10
8秒前
8秒前
科研通AI5应助有机会吗采纳,获得10
9秒前
是我发布了新的文献求助10
9秒前
9秒前
山楂发布了新的文献求助10
10秒前
我是老大应助polite采纳,获得10
11秒前
乐观大雁发布了新的文献求助10
11秒前
兼听则明完成签到,获得积分10
11秒前
9527发布了新的文献求助10
12秒前
高木同学发布了新的文献求助10
13秒前
13秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
劲秉应助科研通管家采纳,获得30
13秒前
李健应助科研通管家采纳,获得10
13秒前
竹外桃花完成签到,获得积分10
13秒前
大模型应助科研通管家采纳,获得10
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
Lucas应助科研通管家采纳,获得30
14秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483395
求助须知:如何正确求助?哪些是违规求助? 3072756
关于积分的说明 9127749
捐赠科研通 2764321
什么是DOI,文献DOI怎么找? 1517109
邀请新用户注册赠送积分活动 701937
科研通“疑难数据库(出版商)”最低求助积分说明 700797