块链
计算机科学
对偶(语法数字)
声誉
物联网
互联网
数据共享
声誉管理
万维网
数据科学
知识管理
计算机安全
医学
艺术
社会科学
替代医学
文学类
病理
社会学
作者
Chenquan Gan,Xinghai Xiao,Qingyi Zhu,Deepak Kumar Jain,Akanksha Saini,Amir Hussain
摘要
Abstract In the Internet of Medical Things (IoMT), the vulnerability of federated learning (FL) to single points of failure, low‐quality nodes, and poisoning attacks necessitates innovative solutions. This article introduces a FL‐driven dual‐blockchain approach to address these challenges and improve data sharing and reputation management. Our approach comprises two blockchains: the Model Quality Blockchain (MQchain) and the Reputation Incentive Blockchain (RIchain). MQchain utilizes an enhanced Proof of Quality (PoQ) consensus algorithm to exclude low‐quality nodes from participating in aggregation, effectively mitigating single points of failure and poisoning attacks by leveraging node reputation and quality thresholds. In parallel, RIchain incorporates a reputation evaluation, incentive mechanism, and index query mechanism, allowing for rapid and comprehensive node evaluation, thus identifying high‐reputation nodes for MQchain. Security analysis confirms the theoretical soundness of the proposed method. Experimental evaluation using real medical datasets, specifically MedMNIST, demonstrates the remarkable resilience of our approach against attacks compared to three alternative methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI