A data-driven approach to predict the in vitro dissolution time of sustained-release tablets using raw material databases and machine learning algorithms

随机森林 机器学习 人工智能 计算机科学 背景(考古学) 决策树 溶解 人工神经网络 深度学习 算法 数据库 化学 生物 物理化学 古生物学
作者
M. Bharathi,Raju Kamaraj,S. Murugaanandam,Navyaja Kota,Anish Kumar Bhunia
出处
期刊:Фармация [Pensoft Publishers]
卷期号:71: 1-7
标识
DOI:10.3897/pharmacia.71.e122772
摘要

Tablets are the most typical dosage forms of pharmaceutical inventions. Sustained-release (SR) tablet formulations are designed to release the drug gradually in the bloodstream and often require less frequent dosing. Current strategies to optimize sustained-release tablet dissolution time still rely on the traditional approach, which is time-consuming and expensive. In the present context, we have demonstrated alternate machine learning and deep learning models through the TPOT AutoML platform. Six machine learning (ML) models were compared to improve the methodology for dissolution time prediction, particularly the decision tree regressor (DTR), gradient boost regressor (GBR), random forest regressor (RFR), extra tree regressor (ETR), XGBoost regressor (XGBR), and deep learning (DL). The obtained results indicated that machine learning methods are convincing in speculating the dissolution time, especially the random forest regressor, but upon hypertuning of the deep neural network, the deep learning model with a 10-fold cross-validation scheme demonstrated superior predictive performance with an NRMSE of 8% and an R 2 of 0.92. The major essentials affecting the dissolution time of SR tablets were explained using the SHAP method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Lee完成签到,获得积分10
1秒前
1秒前
zz发布了新的文献求助10
1秒前
加菲丰丰举报求助违规成功
2秒前
我有魔鬼大头举报求助违规成功
2秒前
kingwill举报求助违规成功
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
Orange应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
无花果应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
4秒前
dddddd完成签到,获得积分20
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
xzy998应助科研通管家采纳,获得10
4秒前
4秒前
Orange应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
Twonej应助科研通管家采纳,获得30
4秒前
无花果应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
暴躁的信封完成签到,获得积分10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
xzy998应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
5秒前
Pull发布了新的文献求助10
5秒前
Twonej应助科研通管家采纳,获得30
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727674
求助须知:如何正确求助?哪些是违规求助? 5309608
关于积分的说明 15311894
捐赠科研通 4875130
什么是DOI,文献DOI怎么找? 2618553
邀请新用户注册赠送积分活动 1568241
关于科研通互助平台的介绍 1524919