生物
热休克蛋白
基因
基因组
遗传学
热冲击
热休克蛋白70
计算生物学
功能(生物学)
系统发育树
基因家族
热休克蛋白60
基因调控网络
鉴定(生物学)
基因表达
生态学
作者
Yuan‐Yuan Li,Deligeer,Jing Liu,Kaiyu Shi
摘要
Heat shock proteins (Hsp) function as crucial molecular chaperones, playing pivotal roles in insects' response to stress stimuli. Apolygus lucorum, known for its broad spectrum of host plants and significant crop damage potential, presents a compelling subject for understanding stress response mechanisms. Hsp is important for A. lucorum to tolerate temperature and insecticide stress and may be involved in the formation of resistance to the interactive effects of temperature and insecticide. Here, we employed comprehensive genomic approaches to identify Hsp superfamily members in its genome. In total, we identified 42 Hsp genes, including 3 Hsp90, 16 Hsp70, 13 Hsp60, and 10 Hsp20. Notably, we conducted motif analysis and gene structures for Hsp members, which suggested the same families are relatively conserved. Furthermore, leveraging the weighted gene coexpression network analysis, we observed diverse expression patterns of different Hsp types across various tissues, with certain Hsp70 showing tissue-specific bias. Noteworthy among the highly expressed Hsp genes was testis-specific, which may serve as a pivotal hub gene regulating the gene network. Our findings shed light on the molecular evolutionary dynamics and temperature stress response mechanisms of Hsp genes in A. lucorum, offering insights into its adaptive strategies and potential targets for pest management.
科研通智能强力驱动
Strongly Powered by AbleSci AI