Reference-Based OCT Angiogram Super-Resolution With Learnable Texture Generation

纹理(宇宙学) 人工智能 计算机科学 计算机视觉 模式识别(心理学) 计算机图形学(图像) 图像(数学)
作者
Yuyan Ruan,Dawei Yang,Ziqi Tang,An Ran Ran,Jiguang Wang,Carol Y. Cheung,Hao Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:1
标识
DOI:10.1109/tnnls.2024.3456483
摘要

Optical coherence tomography angiography (OCTA) can visualize retinal microvasculature and is important to qualitatively and quantitatively identify potential biomarkers for different retinal diseases. However, the resolution of optical coherence tomography (OCT) angiograms inevitably decreases when increasing the field-of-view (FOV) given a fixed acquisition time. To address this issue, we propose a novel reference-based super-resolution (RefSR) framework to preserve the resolution of the OCT angiograms while increasing the scanning area. Specifically, textures from the normal RefSR pipeline are used to train a learnable texture generator (LTG), which is designed to generate textures according to the input. The key difference between the proposed method and traditional RefSR models is that the textures used during inference are generated by the LTG instead of being searched from a single reference (Ref) image. Since the LTG is optimized throughout the whole training process, the available texture space is significantly enlarged and no longer limited to a single Ref image, but extends to all textures contained in the training samples. Moreover, our proposed LTGNet does not require an Ref image at the inference phase, thereby becoming invulnerable to the selection of the Ref image. Both experimental and visual results show that LTGNet has competitive performance and robustness over state-of-the-art methods, indicating good reliability and promise in real-life deployment. The source code is available at https://github.com/RYY0722/LTGNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
刚刚
子辰发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
丘比特应助wy采纳,获得10
3秒前
4秒前
JM发布了新的文献求助10
4秒前
耶卷完成签到,获得积分10
7秒前
温暖天与应助QQ采纳,获得10
7秒前
zy完成签到,获得积分10
7秒前
handsomecat发布了新的文献求助10
8秒前
Dawin发布了新的文献求助10
8秒前
包容妙竹发布了新的文献求助10
9秒前
吴亚运完成签到,获得积分10
9秒前
子辰完成签到,获得积分10
10秒前
耶卷发布了新的文献求助10
10秒前
11秒前
11秒前
qhdsyxy完成签到 ,获得积分0
11秒前
JM完成签到,获得积分10
11秒前
12秒前
优美紫槐应助Barbet采纳,获得10
12秒前
12秒前
13秒前
Jasper应助HMONEY采纳,获得10
14秒前
15秒前
wswswsws完成签到,获得积分10
15秒前
15秒前
16秒前
加菲丰丰应助wxd采纳,获得30
17秒前
西猫发布了新的文献求助10
17秒前
张子烜完成签到,获得积分10
18秒前
韩痘先生发布了新的文献求助10
18秒前
天天快乐应助七木采纳,获得10
19秒前
19秒前
吹泡泡的红豆完成签到 ,获得积分0
20秒前
郭泓嵩发布了新的文献求助10
20秒前
Apuru完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684548
求助须知:如何正确求助?哪些是违规求助? 5037168
关于积分的说明 15184425
捐赠科研通 4843794
什么是DOI,文献DOI怎么找? 2596923
邀请新用户注册赠送积分活动 1549534
关于科研通互助平台的介绍 1508029