已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Reference-Based OCT Angiogram Super-Resolution With Learnable Texture Generation

纹理(宇宙学) 人工智能 计算机科学 计算机视觉 模式识别(心理学) 计算机图形学(图像) 图像(数学)
作者
Yuyan Ruan,Dawei Yang,Ziqi Tang,An Ran Ran,Jiguang Wang,Carol Y. Cheung,Hao Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:1
标识
DOI:10.1109/tnnls.2024.3456483
摘要

Optical coherence tomography angiography (OCTA) can visualize retinal microvasculature and is important to qualitatively and quantitatively identify potential biomarkers for different retinal diseases. However, the resolution of optical coherence tomography (OCT) angiograms inevitably decreases when increasing the field-of-view (FOV) given a fixed acquisition time. To address this issue, we propose a novel reference-based super-resolution (RefSR) framework to preserve the resolution of the OCT angiograms while increasing the scanning area. Specifically, textures from the normal RefSR pipeline are used to train a learnable texture generator (LTG), which is designed to generate textures according to the input. The key difference between the proposed method and traditional RefSR models is that the textures used during inference are generated by the LTG instead of being searched from a single reference (Ref) image. Since the LTG is optimized throughout the whole training process, the available texture space is significantly enlarged and no longer limited to a single Ref image, but extends to all textures contained in the training samples. Moreover, our proposed LTGNet does not require an Ref image at the inference phase, thereby becoming invulnerable to the selection of the Ref image. Both experimental and visual results show that LTGNet has competitive performance and robustness over state-of-the-art methods, indicating good reliability and promise in real-life deployment. The source code is available at https://github.com/RYY0722/LTGNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
秀儿发布了新的文献求助10
3秒前
_h完成签到 ,获得积分10
4秒前
小巧寻桃完成签到 ,获得积分10
5秒前
6秒前
7秒前
开放曼文完成签到,获得积分10
9秒前
感动手链完成签到,获得积分10
11秒前
jyy完成签到,获得积分10
11秒前
雪白的面包完成签到 ,获得积分10
11秒前
12秒前
小西完成签到 ,获得积分10
12秒前
12秒前
13秒前
美味的屑狐狸完成签到 ,获得积分10
13秒前
西伯利亚老母猪完成签到,获得积分10
13秒前
gezid完成签到 ,获得积分10
17秒前
hyt完成签到 ,获得积分10
17秒前
啧啧发布了新的文献求助30
18秒前
19秒前
开放曼文发布了新的文献求助10
19秒前
jyy发布了新的文献求助10
19秒前
gu发布了新的文献求助20
20秒前
上官若男应助Ade采纳,获得10
21秒前
23秒前
24秒前
24秒前
汪汪淬冰冰完成签到,获得积分10
25秒前
jy发布了新的文献求助10
27秒前
30秒前
32秒前
jy完成签到,获得积分20
33秒前
今后应助洞两采纳,获得10
34秒前
SciGPT应助不麻怎么吃采纳,获得10
34秒前
可乐加冰完成签到,获得积分10
38秒前
39秒前
turtle完成签到 ,获得积分10
41秒前
Hcc完成签到 ,获得积分10
41秒前
可乐加冰发布了新的文献求助20
42秒前
大耳萌图完成签到 ,获得积分10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5290918
求助须知:如何正确求助?哪些是违规求助? 4442132
关于积分的说明 13829355
捐赠科研通 4325006
什么是DOI,文献DOI怎么找? 2373909
邀请新用户注册赠送积分活动 1369322
关于科研通互助平台的介绍 1333409