已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Reference-Based OCT Angiogram Super-Resolution With Learnable Texture Generation

纹理(宇宙学) 人工智能 计算机科学 计算机视觉 模式识别(心理学) 计算机图形学(图像) 图像(数学)
作者
Yuyan Ruan,Dawei Yang,Ziqi Tang,An Ran Ran,Jiguang Wang,Carol Y. Cheung,Hao Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:1
标识
DOI:10.1109/tnnls.2024.3456483
摘要

Optical coherence tomography angiography (OCTA) can visualize retinal microvasculature and is important to qualitatively and quantitatively identify potential biomarkers for different retinal diseases. However, the resolution of optical coherence tomography (OCT) angiograms inevitably decreases when increasing the field-of-view (FOV) given a fixed acquisition time. To address this issue, we propose a novel reference-based super-resolution (RefSR) framework to preserve the resolution of the OCT angiograms while increasing the scanning area. Specifically, textures from the normal RefSR pipeline are used to train a learnable texture generator (LTG), which is designed to generate textures according to the input. The key difference between the proposed method and traditional RefSR models is that the textures used during inference are generated by the LTG instead of being searched from a single reference (Ref) image. Since the LTG is optimized throughout the whole training process, the available texture space is significantly enlarged and no longer limited to a single Ref image, but extends to all textures contained in the training samples. Moreover, our proposed LTGNet does not require an Ref image at the inference phase, thereby becoming invulnerable to the selection of the Ref image. Both experimental and visual results show that LTGNet has competitive performance and robustness over state-of-the-art methods, indicating good reliability and promise in real-life deployment. The source code is available at https://github.com/RYY0722/LTGNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leemiii完成签到 ,获得积分10
2秒前
4秒前
cc发布了新的文献求助10
4秒前
6秒前
ZijianHu完成签到,获得积分10
6秒前
VDC关闭了VDC文献求助
10秒前
寰2023发布了新的文献求助10
10秒前
三个气的大门完成签到 ,获得积分10
14秒前
是多多呀完成签到 ,获得积分10
14秒前
15秒前
zzzz完成签到 ,获得积分10
19秒前
GY97应助郑麻采纳,获得80
21秒前
22秒前
韩祖完成签到 ,获得积分10
22秒前
li完成签到 ,获得积分10
23秒前
毛公完成签到,获得积分10
27秒前
liars完成签到 ,获得积分10
28秒前
29秒前
VDC发布了新的文献求助10
33秒前
郑麻发布了新的文献求助10
34秒前
34秒前
ceeray23应助哈哈哈采纳,获得10
35秒前
无风发布了新的文献求助10
35秒前
36秒前
37秒前
38秒前
38秒前
40秒前
医疗废物专用车乘客完成签到,获得积分10
41秒前
精明的鑫发布了新的文献求助10
43秒前
上善若水呦完成签到 ,获得积分10
43秒前
Finch完成签到 ,获得积分10
43秒前
开朗飞阳发布了新的文献求助10
44秒前
冷静剑成发布了新的文献求助10
44秒前
wshyzhxxxn发布了新的文献求助10
45秒前
56发布了新的文献求助10
46秒前
沁雪完成签到 ,获得积分10
47秒前
47秒前
鱼鱼和石头完成签到 ,获得积分10
48秒前
xxwyj完成签到,获得积分10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590260
求助须知:如何正确求助?哪些是违规求助? 4674672
关于积分的说明 14795002
捐赠科研通 4630943
什么是DOI,文献DOI怎么找? 2532648
邀请新用户注册赠送积分活动 1501221
关于科研通互助平台的介绍 1468576