Reference-Based OCT Angiogram Super-Resolution With Learnable Texture Generation

纹理(宇宙学) 人工智能 计算机科学 计算机视觉 模式识别(心理学) 计算机图形学(图像) 图像(数学)
作者
Yuyan Ruan,Dawei Yang,Ziqi Tang,An Ran Ran,Jiguang Wang,Carol Y. Cheung,Hao Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:1
标识
DOI:10.1109/tnnls.2024.3456483
摘要

Optical coherence tomography angiography (OCTA) can visualize retinal microvasculature and is important to qualitatively and quantitatively identify potential biomarkers for different retinal diseases. However, the resolution of optical coherence tomography (OCT) angiograms inevitably decreases when increasing the field-of-view (FOV) given a fixed acquisition time. To address this issue, we propose a novel reference-based super-resolution (RefSR) framework to preserve the resolution of the OCT angiograms while increasing the scanning area. Specifically, textures from the normal RefSR pipeline are used to train a learnable texture generator (LTG), which is designed to generate textures according to the input. The key difference between the proposed method and traditional RefSR models is that the textures used during inference are generated by the LTG instead of being searched from a single reference (Ref) image. Since the LTG is optimized throughout the whole training process, the available texture space is significantly enlarged and no longer limited to a single Ref image, but extends to all textures contained in the training samples. Moreover, our proposed LTGNet does not require an Ref image at the inference phase, thereby becoming invulnerable to the selection of the Ref image. Both experimental and visual results show that LTGNet has competitive performance and robustness over state-of-the-art methods, indicating good reliability and promise in real-life deployment. The source code is available at https://github.com/RYY0722/LTGNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mama完成签到,获得积分20
1秒前
常存喜乐完成签到 ,获得积分10
1秒前
大模型应助快乐篮球采纳,获得10
1秒前
GYR发布了新的文献求助10
2秒前
2秒前
棉花团完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
小马甲应助李里哩采纳,获得10
4秒前
strive发布了新的文献求助10
4秒前
小蘑菇应助satchzhao采纳,获得10
5秒前
梓树发布了新的文献求助10
6秒前
彭于晏应助喜喜不嘻嘻采纳,获得10
6秒前
故槿完成签到 ,获得积分10
7秒前
乙未发布了新的文献求助10
8秒前
8秒前
大模型应助honey采纳,获得10
8秒前
HY发布了新的文献求助10
8秒前
9秒前
模糊老师完成签到,获得积分10
10秒前
10秒前
碧霄完成签到,获得积分10
11秒前
沉默的瑞宝完成签到 ,获得积分10
11秒前
Adam_Lan完成签到,获得积分10
11秒前
顾矜应助明理的帆布鞋采纳,获得10
12秒前
12秒前
乐乐应助乙未采纳,获得10
13秒前
Hello应助儒雅致远采纳,获得10
14秒前
lalalal发布了新的文献求助10
14秒前
15秒前
轨迹应助嘿嘿采纳,获得10
15秒前
Decline发布了新的文献求助10
15秒前
大胆的映萱关注了科研通微信公众号
15秒前
GYR完成签到,获得积分10
16秒前
刘小蕊完成签到,获得积分10
16秒前
花木兰发布了新的文献求助10
16秒前
yuaner发布了新的文献求助10
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695061
求助须知:如何正确求助?哪些是违规求助? 5099914
关于积分的说明 15215127
捐赠科研通 4851509
什么是DOI,文献DOI怎么找? 2602393
邀请新用户注册赠送积分活动 1554207
关于科研通互助平台的介绍 1512167