Reference-Based OCT Angiogram Super-Resolution With Learnable Texture Generation

纹理(宇宙学) 人工智能 计算机科学 计算机视觉 模式识别(心理学) 计算机图形学(图像) 图像(数学)
作者
Yuyan Ruan,Dawei Yang,Ziqi Tang,An Ran Ran,Jiguang Wang,Carol Y. Cheung,Hao Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:1
标识
DOI:10.1109/tnnls.2024.3456483
摘要

Optical coherence tomography angiography (OCTA) can visualize retinal microvasculature and is important to qualitatively and quantitatively identify potential biomarkers for different retinal diseases. However, the resolution of optical coherence tomography (OCT) angiograms inevitably decreases when increasing the field-of-view (FOV) given a fixed acquisition time. To address this issue, we propose a novel reference-based super-resolution (RefSR) framework to preserve the resolution of the OCT angiograms while increasing the scanning area. Specifically, textures from the normal RefSR pipeline are used to train a learnable texture generator (LTG), which is designed to generate textures according to the input. The key difference between the proposed method and traditional RefSR models is that the textures used during inference are generated by the LTG instead of being searched from a single reference (Ref) image. Since the LTG is optimized throughout the whole training process, the available texture space is significantly enlarged and no longer limited to a single Ref image, but extends to all textures contained in the training samples. Moreover, our proposed LTGNet does not require an Ref image at the inference phase, thereby becoming invulnerable to the selection of the Ref image. Both experimental and visual results show that LTGNet has competitive performance and robustness over state-of-the-art methods, indicating good reliability and promise in real-life deployment. The source code is available at https://github.com/RYY0722/LTGNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
刚刚
Hello应助冀晓梦采纳,获得10
刚刚
小青椒应助冷酷妙菡采纳,获得30
刚刚
wuqs发布了新的文献求助10
1秒前
甜甜完成签到,获得积分10
1秒前
qty完成签到 ,获得积分10
1秒前
梨花香发布了新的文献求助10
1秒前
Yo鹿完成签到,获得积分20
2秒前
眼睛大世开完成签到,获得积分10
2秒前
2秒前
2秒前
zone完成签到,获得积分10
2秒前
3秒前
liuzr应助忐忑的致远采纳,获得10
3秒前
3秒前
领导范儿应助22222采纳,获得10
3秒前
3秒前
颜琀樱发布了新的文献求助10
3秒前
我是哈哈超人完成签到,获得积分10
4秒前
共享精神应助诚心盼海采纳,获得10
4秒前
卜应完成签到,获得积分10
5秒前
6秒前
呜呜完成签到,获得积分10
6秒前
6秒前
cjh发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
牛康康完成签到,获得积分20
7秒前
7秒前
夜月残阳发布了新的文献求助10
7秒前
8秒前
bkagyin应助开放明雪采纳,获得10
8秒前
KEO发布了新的文献求助10
8秒前
愉快南风完成签到,获得积分10
8秒前
野性的懿轩完成签到,获得积分10
9秒前
Mobius发布了新的文献求助10
9秒前
梨花香完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608729
求助须知:如何正确求助?哪些是违规求助? 4693458
关于积分的说明 14878149
捐赠科研通 4718291
什么是DOI,文献DOI怎么找? 2544447
邀请新用户注册赠送积分活动 1509484
关于科研通互助平台的介绍 1472883