Reference-Based OCT Angiogram Super-Resolution With Learnable Texture Generation

纹理(宇宙学) 人工智能 计算机科学 计算机视觉 模式识别(心理学) 计算机图形学(图像) 图像(数学)
作者
Yuyan Ruan,Dawei Yang,Ziqi Tang,An Ran Ran,Jiguang Wang,Carol Y. Cheung,Hao Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:1
标识
DOI:10.1109/tnnls.2024.3456483
摘要

Optical coherence tomography angiography (OCTA) can visualize retinal microvasculature and is important to qualitatively and quantitatively identify potential biomarkers for different retinal diseases. However, the resolution of optical coherence tomography (OCT) angiograms inevitably decreases when increasing the field-of-view (FOV) given a fixed acquisition time. To address this issue, we propose a novel reference-based super-resolution (RefSR) framework to preserve the resolution of the OCT angiograms while increasing the scanning area. Specifically, textures from the normal RefSR pipeline are used to train a learnable texture generator (LTG), which is designed to generate textures according to the input. The key difference between the proposed method and traditional RefSR models is that the textures used during inference are generated by the LTG instead of being searched from a single reference (Ref) image. Since the LTG is optimized throughout the whole training process, the available texture space is significantly enlarged and no longer limited to a single Ref image, but extends to all textures contained in the training samples. Moreover, our proposed LTGNet does not require an Ref image at the inference phase, thereby becoming invulnerable to the selection of the Ref image. Both experimental and visual results show that LTGNet has competitive performance and robustness over state-of-the-art methods, indicating good reliability and promise in real-life deployment. The source code is available at https://github.com/RYY0722/LTGNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
专注的问寒应助Sweger采纳,获得20
3秒前
阡陌完成签到,获得积分10
4秒前
Owen应助平淡的画板采纳,获得10
4秒前
5秒前
6秒前
akaMZT完成签到,获得积分10
6秒前
hui发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助30
9秒前
苹果发布了新的文献求助10
9秒前
港崽宝宝完成签到,获得积分10
10秒前
phil发布了新的文献求助10
10秒前
11秒前
闰土完成签到 ,获得积分10
12秒前
阿季完成签到,获得积分10
15秒前
科研通AI2S应助ts采纳,获得10
15秒前
酷波er应助杨石石石采纳,获得10
16秒前
隐形曼青应助ni采纳,获得10
16秒前
Zzz关闭了Zzz文献求助
17秒前
17秒前
阿季发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
19秒前
传奇3应助藏藏采纳,获得10
21秒前
暴躁的马里奥完成签到,获得积分10
21秒前
22秒前
小温发布了新的文献求助10
24秒前
24秒前
zwd完成签到 ,获得积分10
24秒前
爆米花应助优美紫槐采纳,获得10
26秒前
66完成签到,获得积分20
26秒前
Aisaka应助宇宙超人007008采纳,获得10
27秒前
量子星尘发布了新的文献求助10
27秒前
长得像杨蕃完成签到,获得积分10
28秒前
笑点低剑封完成签到,获得积分10
29秒前
大模型应助俊秀的糖豆采纳,获得10
30秒前
32秒前
32秒前
33秒前
Duor关注了科研通微信公众号
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729284
求助须知:如何正确求助?哪些是违规求助? 5317494
关于积分的说明 15316294
捐赠科研通 4876286
什么是DOI,文献DOI怎么找? 2619327
邀请新用户注册赠送积分活动 1568862
关于科研通互助平台的介绍 1525381