Reference-Based OCT Angiogram Super-Resolution With Learnable Texture Generation

纹理(宇宙学) 人工智能 计算机科学 计算机视觉 模式识别(心理学) 计算机图形学(图像) 图像(数学)
作者
Yuyan Ruan,Dawei Yang,Ziqi Tang,An Ran Ran,Jiguang Wang,Carol Y. Cheung,Hao Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:1
标识
DOI:10.1109/tnnls.2024.3456483
摘要

Optical coherence tomography angiography (OCTA) can visualize retinal microvasculature and is important to qualitatively and quantitatively identify potential biomarkers for different retinal diseases. However, the resolution of optical coherence tomography (OCT) angiograms inevitably decreases when increasing the field-of-view (FOV) given a fixed acquisition time. To address this issue, we propose a novel reference-based super-resolution (RefSR) framework to preserve the resolution of the OCT angiograms while increasing the scanning area. Specifically, textures from the normal RefSR pipeline are used to train a learnable texture generator (LTG), which is designed to generate textures according to the input. The key difference between the proposed method and traditional RefSR models is that the textures used during inference are generated by the LTG instead of being searched from a single reference (Ref) image. Since the LTG is optimized throughout the whole training process, the available texture space is significantly enlarged and no longer limited to a single Ref image, but extends to all textures contained in the training samples. Moreover, our proposed LTGNet does not require an Ref image at the inference phase, thereby becoming invulnerable to the selection of the Ref image. Both experimental and visual results show that LTGNet has competitive performance and robustness over state-of-the-art methods, indicating good reliability and promise in real-life deployment. The source code is available at https://github.com/RYY0722/LTGNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助sadd采纳,获得10
1秒前
1秒前
SciGPT应助金金采纳,获得10
1秒前
鹿c3完成签到,获得积分10
1秒前
laochen发布了新的文献求助10
2秒前
CipherSage应助DecC采纳,获得30
2秒前
linjunqi完成签到,获得积分10
2秒前
3秒前
踏雾发布了新的文献求助10
3秒前
3秒前
3秒前
王侯将相发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
Nimeide发布了新的文献求助10
4秒前
英姑应助M95采纳,获得10
4秒前
wanci应助杨玉龙采纳,获得10
4秒前
动听的雪卉完成签到,获得积分10
5秒前
个性枕头完成签到 ,获得积分20
5秒前
卓念梦发布了新的文献求助10
5秒前
Rain完成签到,获得积分10
5秒前
5秒前
qwe完成签到,获得积分10
6秒前
6秒前
一二发布了新的文献求助10
6秒前
淡淡千风完成签到,获得积分10
7秒前
7秒前
董冬冬完成签到,获得积分20
7秒前
7秒前
8秒前
wang完成签到 ,获得积分10
9秒前
9秒前
zhou完成签到,获得积分10
10秒前
10秒前
爱笑如冰完成签到 ,获得积分10
10秒前
CodeCraft应助锂离子采纳,获得10
10秒前
10秒前
甜美白云发布了新的文献求助10
11秒前
11秒前
11秒前
BEI发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667453
求助须知:如何正确求助?哪些是违规求助? 4885755
关于积分的说明 15120132
捐赠科研通 4826235
什么是DOI,文献DOI怎么找? 2583865
邀请新用户注册赠送积分活动 1537959
关于科研通互助平台的介绍 1496082