Reference-Based OCT Angiogram Super-Resolution With Learnable Texture Generation

纹理(宇宙学) 人工智能 计算机科学 计算机视觉 模式识别(心理学) 计算机图形学(图像) 图像(数学)
作者
Yuyan Ruan,Dawei Yang,Ziqi Tang,An Ran Ran,Jiguang Wang,Carol Y. Cheung,Hao Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:1
标识
DOI:10.1109/tnnls.2024.3456483
摘要

Optical coherence tomography angiography (OCTA) can visualize retinal microvasculature and is important to qualitatively and quantitatively identify potential biomarkers for different retinal diseases. However, the resolution of optical coherence tomography (OCT) angiograms inevitably decreases when increasing the field-of-view (FOV) given a fixed acquisition time. To address this issue, we propose a novel reference-based super-resolution (RefSR) framework to preserve the resolution of the OCT angiograms while increasing the scanning area. Specifically, textures from the normal RefSR pipeline are used to train a learnable texture generator (LTG), which is designed to generate textures according to the input. The key difference between the proposed method and traditional RefSR models is that the textures used during inference are generated by the LTG instead of being searched from a single reference (Ref) image. Since the LTG is optimized throughout the whole training process, the available texture space is significantly enlarged and no longer limited to a single Ref image, but extends to all textures contained in the training samples. Moreover, our proposed LTGNet does not require an Ref image at the inference phase, thereby becoming invulnerable to the selection of the Ref image. Both experimental and visual results show that LTGNet has competitive performance and robustness over state-of-the-art methods, indicating good reliability and promise in real-life deployment. The source code is available at https://github.com/RYY0722/LTGNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
张宇鑫完成签到,获得积分10
2秒前
4秒前
舒适金鱼完成签到,获得积分10
5秒前
靛蓝喹啉完成签到 ,获得积分10
5秒前
英俊完成签到,获得积分10
6秒前
6秒前
耍酷天寿发布了新的文献求助10
8秒前
研友_VZG7GZ应助wmq采纳,获得10
9秒前
赘婿应助傻傻的雅寒采纳,获得10
10秒前
鲤鱼睿渊完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
开心的茗茗完成签到 ,获得积分10
11秒前
李爱国应助1212采纳,获得10
12秒前
huang_xiaohuo完成签到,获得积分10
13秒前
13秒前
Akim应助溪水哗哗采纳,获得10
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
乔凌云完成签到 ,获得积分10
16秒前
Elijah完成签到,获得积分10
19秒前
无花果应助冰与火采纳,获得30
20秒前
迷人的贻发布了新的文献求助10
20秒前
21秒前
24秒前
24秒前
yy发布了新的文献求助10
24秒前
学习完成签到 ,获得积分10
25秒前
26秒前
浪子应助开心的茗茗采纳,获得10
27秒前
Hello应助开心的茗茗采纳,获得10
27秒前
Elijah发布了新的文献求助10
27秒前
大花花完成签到,获得积分10
28秒前
30秒前
wnan_07完成签到,获得积分10
33秒前
blenx完成签到,获得积分10
33秒前
zhangmeimei发布了新的文献求助10
33秒前
34秒前
35秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742197
求助须知:如何正确求助?哪些是违规求助? 5407018
关于积分的说明 15344388
捐赠科研通 4883635
什么是DOI,文献DOI怎么找? 2625185
邀请新用户注册赠送积分活动 1574043
关于科研通互助平台的介绍 1530978