Reference-Based OCT Angiogram Super-Resolution With Learnable Texture Generation

纹理(宇宙学) 人工智能 计算机科学 计算机视觉 模式识别(心理学) 计算机图形学(图像) 图像(数学)
作者
Yuyan Ruan,Dawei Yang,Ziqi Tang,An Ran Ran,Jiguang Wang,Carol Y. Cheung,Hao Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:1
标识
DOI:10.1109/tnnls.2024.3456483
摘要

Optical coherence tomography angiography (OCTA) can visualize retinal microvasculature and is important to qualitatively and quantitatively identify potential biomarkers for different retinal diseases. However, the resolution of optical coherence tomography (OCT) angiograms inevitably decreases when increasing the field-of-view (FOV) given a fixed acquisition time. To address this issue, we propose a novel reference-based super-resolution (RefSR) framework to preserve the resolution of the OCT angiograms while increasing the scanning area. Specifically, textures from the normal RefSR pipeline are used to train a learnable texture generator (LTG), which is designed to generate textures according to the input. The key difference between the proposed method and traditional RefSR models is that the textures used during inference are generated by the LTG instead of being searched from a single reference (Ref) image. Since the LTG is optimized throughout the whole training process, the available texture space is significantly enlarged and no longer limited to a single Ref image, but extends to all textures contained in the training samples. Moreover, our proposed LTGNet does not require an Ref image at the inference phase, thereby becoming invulnerable to the selection of the Ref image. Both experimental and visual results show that LTGNet has competitive performance and robustness over state-of-the-art methods, indicating good reliability and promise in real-life deployment. The source code is available at https://github.com/RYY0722/LTGNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
张婷关注了科研通微信公众号
1秒前
www完成签到,获得积分10
1秒前
青年才俊发布了新的文献求助20
1秒前
0713完成签到,获得积分10
2秒前
yulk发布了新的文献求助10
2秒前
无限安蕾完成签到,获得积分10
3秒前
5秒前
6秒前
852应助shen采纳,获得10
7秒前
Wenshan完成签到,获得积分20
8秒前
yulk完成签到,获得积分10
9秒前
ddd发布了新的文献求助10
9秒前
10秒前
淀粉肠完成签到 ,获得积分10
10秒前
开放草莓发布了新的文献求助10
10秒前
leeshho完成签到,获得积分10
11秒前
12秒前
12秒前
Akim应助胡舒阳采纳,获得10
14秒前
大个应助小谢同学采纳,获得10
14秒前
15秒前
天真的人英完成签到 ,获得积分10
15秒前
16秒前
16秒前
喜欢看神仙打架完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
怕黑向秋发布了新的文献求助10
17秒前
18秒前
zhuzhu完成签到,获得积分10
21秒前
雪白的稀发布了新的文献求助10
21秒前
科研通AI6.1应助Wenshan采纳,获得10
22秒前
曲书文完成签到,获得积分10
22秒前
22秒前
打打应助顶级科学家采纳,获得10
22秒前
Hello应助124_dfs采纳,获得10
24秒前
wxy完成签到,获得积分10
25秒前
ZSS完成签到,获得积分10
26秒前
wanci应助喜欢看神仙打架采纳,获得10
27秒前
jolt完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737113
求助须知:如何正确求助?哪些是违规求助? 5371030
关于积分的说明 15334920
捐赠科研通 4880851
什么是DOI,文献DOI怎么找? 2623064
邀请新用户注册赠送积分活动 1571894
关于科研通互助平台的介绍 1528752