Reference-Based OCT Angiogram Super-Resolution With Learnable Texture Generation

纹理(宇宙学) 人工智能 计算机科学 计算机视觉 模式识别(心理学) 计算机图形学(图像) 图像(数学)
作者
Yuyan Ruan,Dawei Yang,Ziqi Tang,An Ran Ran,Jiguang Wang,Carol Y. Cheung,Hao Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:1
标识
DOI:10.1109/tnnls.2024.3456483
摘要

Optical coherence tomography angiography (OCTA) can visualize retinal microvasculature and is important to qualitatively and quantitatively identify potential biomarkers for different retinal diseases. However, the resolution of optical coherence tomography (OCT) angiograms inevitably decreases when increasing the field-of-view (FOV) given a fixed acquisition time. To address this issue, we propose a novel reference-based super-resolution (RefSR) framework to preserve the resolution of the OCT angiograms while increasing the scanning area. Specifically, textures from the normal RefSR pipeline are used to train a learnable texture generator (LTG), which is designed to generate textures according to the input. The key difference between the proposed method and traditional RefSR models is that the textures used during inference are generated by the LTG instead of being searched from a single reference (Ref) image. Since the LTG is optimized throughout the whole training process, the available texture space is significantly enlarged and no longer limited to a single Ref image, but extends to all textures contained in the training samples. Moreover, our proposed LTGNet does not require an Ref image at the inference phase, thereby becoming invulnerable to the selection of the Ref image. Both experimental and visual results show that LTGNet has competitive performance and robustness over state-of-the-art methods, indicating good reliability and promise in real-life deployment. The source code is available at https://github.com/RYY0722/LTGNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
icecream完成签到,获得积分20
2秒前
vergegung完成签到,获得积分10
2秒前
3秒前
宝铭YUAN完成签到,获得积分10
4秒前
哇哦哦完成签到,获得积分20
5秒前
vergegung发布了新的文献求助30
6秒前
顾矜应助jkhjkhj采纳,获得10
6秒前
6秒前
酷炫的__发布了新的文献求助10
7秒前
7秒前
Akim应助gi采纳,获得10
8秒前
xixixi发布了新的文献求助10
8秒前
sevenhill应助露露采纳,获得10
8秒前
9秒前
搜集达人应助大灯泡采纳,获得10
10秒前
清脆香露完成签到,获得积分10
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
石石刘发布了新的文献求助20
12秒前
vv完成签到 ,获得积分10
13秒前
优秀的人发布了新的文献求助10
13秒前
14秒前
大模型应助yy采纳,获得10
14秒前
16秒前
16秒前
金金子发布了新的文献求助30
16秒前
17完成签到 ,获得积分10
16秒前
单于远山完成签到 ,获得积分10
17秒前
科研通AI2S应助xiaobai采纳,获得10
18秒前
赘婿应助hebhm采纳,获得10
18秒前
Ava应助顺心的巨人采纳,获得10
18秒前
小青椒应助xuejie采纳,获得30
19秒前
不安冰棍完成签到,获得积分10
19秒前
维克托雷完成签到,获得积分10
21秒前
新年发布了新的文献求助10
21秒前
陈龙完成签到,获得积分10
21秒前
张永完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5636950
求助须知:如何正确求助?哪些是违规求助? 4742342
关于积分的说明 14997109
捐赠科研通 4795139
什么是DOI,文献DOI怎么找? 2561855
邀请新用户注册赠送积分活动 1521357
关于科研通互助平台的介绍 1481458