亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Reference-Based OCT Angiogram Super-Resolution With Learnable Texture Generation

纹理(宇宙学) 人工智能 计算机科学 计算机视觉 模式识别(心理学) 计算机图形学(图像) 图像(数学)
作者
Yuyan Ruan,Dawei Yang,Ziqi Tang,An Ran Ran,Jiguang Wang,Carol Y. Cheung,Hao Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:1
标识
DOI:10.1109/tnnls.2024.3456483
摘要

Optical coherence tomography angiography (OCTA) can visualize retinal microvasculature and is important to qualitatively and quantitatively identify potential biomarkers for different retinal diseases. However, the resolution of optical coherence tomography (OCT) angiograms inevitably decreases when increasing the field-of-view (FOV) given a fixed acquisition time. To address this issue, we propose a novel reference-based super-resolution (RefSR) framework to preserve the resolution of the OCT angiograms while increasing the scanning area. Specifically, textures from the normal RefSR pipeline are used to train a learnable texture generator (LTG), which is designed to generate textures according to the input. The key difference between the proposed method and traditional RefSR models is that the textures used during inference are generated by the LTG instead of being searched from a single reference (Ref) image. Since the LTG is optimized throughout the whole training process, the available texture space is significantly enlarged and no longer limited to a single Ref image, but extends to all textures contained in the training samples. Moreover, our proposed LTGNet does not require an Ref image at the inference phase, thereby becoming invulnerable to the selection of the Ref image. Both experimental and visual results show that LTGNet has competitive performance and robustness over state-of-the-art methods, indicating good reliability and promise in real-life deployment. The source code is available at https://github.com/RYY0722/LTGNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
VDC发布了新的文献求助10
2秒前
2秒前
闵凝竹完成签到 ,获得积分0
6秒前
YNHN发布了新的文献求助10
8秒前
18秒前
脑洞疼应助YNHN采纳,获得10
20秒前
wingmay发布了新的文献求助10
23秒前
28秒前
28秒前
科研通AI6应助yexu采纳,获得10
31秒前
Thi发布了新的文献求助10
34秒前
落寞惮发布了新的文献求助10
34秒前
酒渡完成签到,获得积分10
38秒前
刘刘完成签到 ,获得积分10
42秒前
Criminology34应助科研通管家采纳,获得10
57秒前
Criminology34应助科研通管家采纳,获得10
57秒前
Criminology34应助科研通管家采纳,获得10
57秒前
顾矜应助科研通管家采纳,获得10
57秒前
ceeray23应助科研通管家采纳,获得10
57秒前
ZanE完成签到,获得积分10
58秒前
1分钟前
SUnnnnn发布了新的文献求助10
1分钟前
慕青应助落寞惮采纳,获得10
1分钟前
善学以致用应助SUnnnnn采纳,获得10
1分钟前
1分钟前
烟花应助chen采纳,获得10
1分钟前
打打应助邬美杰采纳,获得10
1分钟前
聪慧凡雁完成签到,获得积分10
1分钟前
英姑应助聪慧凡雁采纳,获得10
1分钟前
YYL完成签到 ,获得积分10
1分钟前
1分钟前
聪慧凡雁发布了新的文献求助10
2分钟前
科研通AI6应助哈哈我采纳,获得10
2分钟前
guanoo完成签到,获得积分10
2分钟前
求助中完成签到 ,获得积分10
2分钟前
2分钟前
传奇3应助麻辣香锅采纳,获得10
2分钟前
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650948
求助须知:如何正确求助?哪些是违规求助? 4782100
关于积分的说明 15052770
捐赠科研通 4809707
什么是DOI,文献DOI怎么找? 2572518
邀请新用户注册赠送积分活动 1528569
关于科研通互助平台的介绍 1487529