Reference-Based OCT Angiogram Super-Resolution With Learnable Texture Generation

纹理(宇宙学) 人工智能 计算机科学 计算机视觉 模式识别(心理学) 计算机图形学(图像) 图像(数学)
作者
Yanhua Ruan,Dawei Yang,Ziqi Tang,An Ran Ran,Jiguang Wang,Carol Y. Cheung,Hao Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tnnls.2024.3456483
摘要

Optical coherence tomography angiography (OCTA) can visualize retinal microvasculature and is important to qualitatively and quantitatively identify potential biomarkers for different retinal diseases. However, the resolution of optical coherence tomography (OCT) angiograms inevitably decreases when increasing the field-of-view (FOV) given a fixed acquisition time. To address this issue, we propose a novel reference-based super-resolution (RefSR) framework to preserve the resolution of the OCT angiograms while increasing the scanning area. Specifically, textures from the normal RefSR pipeline are used to train a learnable texture generator (LTG), which is designed to generate textures according to the input. The key difference between the proposed method and traditional RefSR models is that the textures used during inference are generated by the LTG instead of being searched from a single reference (Ref) image. Since the LTG is optimized throughout the whole training process, the available texture space is significantly enlarged and no longer limited to a single Ref image, but extends to all textures contained in the training samples. Moreover, our proposed LTGNet does not require an Ref image at the inference phase, thereby becoming invulnerable to the selection of the Ref image. Both experimental and visual results show that LTGNet has competitive performance and robustness over state-of-the-art methods, indicating good reliability and promise in real-life deployment. The source code is available at https://github.com/RYY0722/LTGNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助zhangscience采纳,获得10
刚刚
1秒前
ww发布了新的文献求助30
1秒前
3秒前
cube发布了新的文献求助10
3秒前
bkagyin应助辰星采纳,获得10
5秒前
已知中的未知关注了科研通微信公众号
5秒前
大模型应助高高白曼舞采纳,获得10
5秒前
sandra发布了新的文献求助10
6秒前
7秒前
orixero应助阳光静蕾采纳,获得10
7秒前
青鸟飞鱼完成签到,获得积分10
8秒前
Evooolet发布了新的文献求助10
8秒前
科研通AI2S应助flyoverstack采纳,获得10
8秒前
倦梦还完成签到 ,获得积分10
10秒前
酷波er应助狂野绿竹采纳,获得10
11秒前
13秒前
13秒前
14秒前
CodeCraft应助ww采纳,获得50
15秒前
15秒前
kk关闭了kk文献求助
15秒前
Evooolet完成签到,获得积分10
16秒前
HEIKU应助Ahha采纳,获得10
16秒前
cube完成签到,获得积分10
16秒前
懦弱的如蓉完成签到,获得积分10
16秒前
冷傲芷雪完成签到 ,获得积分10
16秒前
小丘2024发布了新的文献求助10
17秒前
LD发布了新的文献求助10
18秒前
程程程完成签到,获得积分10
18秒前
深情安青应助尊敬曼岚采纳,获得10
19秒前
儒雅的凡阳完成签到,获得积分10
19秒前
20秒前
liz_完成签到 ,获得积分10
20秒前
星辰大海应助wangzhao采纳,获得10
21秒前
22秒前
Liu完成签到 ,获得积分10
22秒前
22秒前
23秒前
瑾笙关注了科研通微信公众号
23秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142067
求助须知:如何正确求助?哪些是违规求助? 2793006
关于积分的说明 7805015
捐赠科研通 2449359
什么是DOI,文献DOI怎么找? 1303185
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291