Health status assessment of pump station units based on spatio-temporal fusion and uncertainty information

计算机科学 信息融合 融合 数据科学 数据挖掘 人工智能 哲学 语言学
作者
Panpan Qiu,Jianzhuo Yan,Hongxia Xu,Yongchuan Yu
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-74651-7
摘要

An effective health status assessment (HSA) for pump station units (PSUs) is crucial for accurately determining their real status and providing technical support for safe operational decisions. Due to the limitations of existing data-driven HSA methods, which primarily focus on the temporal dependencies of monitoring signals and fail to explore the complex interconnections among signals comprehensively. Moreover, when constructing performance degradation indices based on linear differences, these methods do not effectively integrate heterogeneous signals, resulting in an incomplete and inaccurate assessment of the overall system degradation. This paper proposes a real-time comprehensive HSA method for PSUs based on multi-source heterogeneous uncertainty information. Initially, a health benchmark model (HBM) is built using CrossGNN, which possesses cross-scale and cross-variable interaction capabilities, to precisely capture the temporal dependencies and dynamic relationships among variables in monitoring signals. Subsequently, key measurement points that reflect the operational status of the PSUs are identified through correlation analysis to establish multi-source evaluation indices. Then, considering the uncertainty in signal changes, a novel health degradation index (HDI) is developed using Mahalanobis distance (MD) and the Gaussian Cloud Model (GCM) to analyze changes in unit status. Furthermore, a weighting calculation method based on the non-dominated sorting genetic algorithm (NSGA-II) is proposed to establish a real-time comprehensive health index (RCHDI) for a thorough assessment of PSUs status. Finally, the effectiveness of the proposed method is validated through a case study using data from a pump station in the South-to-North Water Diversion Project in China. The results show that, compared to other studies, the proposed method significantly improves the stability and smoothness of the state assessment curve, with increases of 21.5% and 47.1% respectively, providing a new perspective for comprehensively assessing the health status of PSUs.V.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田恬完成签到,获得积分10
刚刚
1秒前
feng1235完成签到,获得积分10
2秒前
Levus发布了新的文献求助10
3秒前
眯眯眼的筮完成签到 ,获得积分10
3秒前
科研通AI5应助实物图采纳,获得10
4秒前
药小博发布了新的文献求助10
5秒前
6秒前
尹尹尹完成签到 ,获得积分10
7秒前
feng1235发布了新的文献求助10
8秒前
8秒前
JamesPei应助wenhao采纳,获得10
8秒前
8秒前
Hello应助ruirui采纳,获得10
9秒前
小乔发布了新的文献求助10
10秒前
Lemon完成签到 ,获得积分10
10秒前
梓海完成签到,获得积分10
10秒前
12秒前
Jasper应助科研通管家采纳,获得10
14秒前
劲秉应助科研通管家采纳,获得10
14秒前
李健应助科研通管家采纳,获得10
14秒前
14秒前
劲秉应助科研通管家采纳,获得10
15秒前
邓佳鑫Alan应助科研通管家采纳,获得10
15秒前
邓佳鑫Alan应助科研通管家采纳,获得10
15秒前
15秒前
邓佳鑫Alan应助科研通管家采纳,获得10
15秒前
邓佳鑫Alan应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得30
15秒前
15秒前
liu应助科研通管家采纳,获得10
15秒前
liu应助科研通管家采纳,获得10
15秒前
劲秉应助科研通管家采纳,获得150
16秒前
情怀应助科研通管家采纳,获得10
16秒前
liu应助科研通管家采纳,获得10
16秒前
顾矜应助科研通管家采纳,获得10
16秒前
16秒前
liu应助科研通管家采纳,获得10
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3670611
求助须知:如何正确求助?哪些是违规求助? 3227630
关于积分的说明 9776427
捐赠科研通 2937783
什么是DOI,文献DOI怎么找? 1609606
邀请新用户注册赠送积分活动 760441
科研通“疑难数据库(出版商)”最低求助积分说明 735869